S. Bakhoum, Christopher J. E. Haggerty, C. Bâ, N. Jouanard, G. Riveau, Jason Rohr
{"title":"Seasonal Variations of Densities of Biomphalaria pfeifferi, the Intermediate Host of Schistosoma mansoni Parasite at the North of Senegal","authors":"S. Bakhoum, Christopher J. E. Haggerty, C. Bâ, N. Jouanard, G. Riveau, Jason Rohr","doi":"10.5772/intechopen.99217","DOIUrl":"https://doi.org/10.5772/intechopen.99217","url":null,"abstract":"Schistosomiasis is becoming more persistent because of the widespread distribution of intermediate host snails in several regions of Africa, including Senegal. The intermediate snail host of the human intestinal schistosome is Biomphalaria pfeifferi and is permanently present in northern Senegal because of the presence of the abundant freshwater habitat throughout the year. Here, we observed the seasonal variation in B. pfeifferi abundance in the Saint-louis region at the North of Senegal in West Africa. We performed snail and environmental parameter sampling across two different seasons described for Senegal: a dry season that runs roughly from mid-October to mid-June and a rainy season that spans approximately from late June to early October. We also split the dry season into two categories representing periods of time when water temperatures were either decreasing (dry1) or increasing (dry2). We used regression analyses to model snail density across the seasons and investigated which environmental variables influenced snail abundance. Results suggested that snails were more abundant and peaked during the rainy season, which lowest abundances during the dry season when temperatures were declining. The above seasonal variations of snail density were positively linked to the environmental drivers including periphyton (food resource for snails), aquatic vegetation abundance, water temperature and dissolved oxygen and negatively to both pH and water conductivity. Our findings may be useful for snail control efforts by targeting specific periods and/or site conditions when snail abundances are greatest.","PeriodicalId":334081,"journal":{"name":"Basic and Applied Malacology [Working Title]","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124951432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green Tea-Derived Catechins have Beneficial Effects on Cognition in the Pond Snail","authors":"Y. Komatsuzaki, Ayaka Itoh, M. Saito","doi":"10.5772/intechopen.99789","DOIUrl":"https://doi.org/10.5772/intechopen.99789","url":null,"abstract":"Green tea has been used as a medicine in East Asia for thousands of years. Plant-derived compounds called flavanols, which are included in green tea, may have potentials to help maintain healthy brain function. In this chapter, we review the effects of flavanols, e.g. epicatechin (EpiC), on cognitive ability in the pond snail, Lymnaea stagnalis. In this decade, the Lukowiak’s group has tested the effects of EpiC on cognition ability in Lymnaea. In a Lymnaea model system, they showed that EpiC and EpiC-containing foods have a rapid and activity-dependent effect enhancing the formation of long-term memory (LTM) following operant conditioning of aerial respiratory behavior. In the last part of this chapter, we also introduce our study for the effects of EpiC on LTM formation in another model system in Lymnaea. This study showed that EpiC increases the persistence of LTM formed by classical conditioning of feeding behavior, and suggested that EpiC alters some electrophysiological properties of a neuron in the feeding system.","PeriodicalId":334081,"journal":{"name":"Basic and Applied Malacology [Working Title]","volume":"163 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116509425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Trends in Freshwater Pearl Farming in India","authors":"S. Saurabh, S. Pradhan, S. Suman","doi":"10.5772/intechopen.99281","DOIUrl":"https://doi.org/10.5772/intechopen.99281","url":null,"abstract":"Cultured pearls have an important place in international trade. The Vedas, the Bible, and the Koran all mentioned pearls, and they are regarded as one of the highest honours. Pearls are generated in nature when an irritant, such as a sand grain or a parasite, is swept into the pearl molluscs and lodged within it, where it is coated with micro-layers of nacre, a lustrous substance made up of 80–90 per cent aragonite crystals of CaCO3. The ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, India, has created a base technology for cultivating pearls in freshwater habitats, recognising the scope and value of freshwater pearl production. Indian pond mussel, Lamellidens marginalis is the major species used in freshwater pearl aquaculture. In addition, ICAR-CIFA has pioneered a novel feature of freshwater pearl farming. The Institute has also taken the lead in disseminating freshwater pearl culture technology to the country’s fish farming communities, entrepreneurs, researchers, and students to build a sustainable model for the country’s socio-economic development. In this chapter, we will briefly cover pearls and their types, their historical significance, the spread of pearl mussels of freshwater origin in various countries, pearl biomineralisation, pearl farming techniques, and factors affecting pearl quality, among other things.","PeriodicalId":334081,"journal":{"name":"Basic and Applied Malacology [Working Title]","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121013705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}