Geometric and Harmonic Analysis on Homogeneous Spaces最新文献

筛选
英文 中文
Self-Chabauty-isolated Locally Compact Groups 自特征孤立的局部紧群
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_2
H. Hamrouni, Firas Sadki
{"title":"Self-Chabauty-isolated Locally Compact Groups","authors":"H. Hamrouni, Firas Sadki","doi":"10.1007/978-3-030-26562-5_2","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_2","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121642389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cartan Decomposition for Non-symmetric Reductive Spherical Pairs of Rank-One Type and Its Application to Visible Actions 秩1型非对称约化球对的Cartan分解及其在可见作用中的应用
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_7
A. Sasaki
{"title":"A Cartan Decomposition for Non-symmetric Reductive Spherical Pairs of Rank-One Type and Its Application to Visible Actions","authors":"A. Sasaki","doi":"10.1007/978-3-030-26562-5_7","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_7","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"95 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113989906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Example of Holomorphically Induced Representations of Exponential Solvable Lie Groups 指数可解李群的全纯诱导表示的一个例子
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_5
Junko Inoue
{"title":"An Example of Holomorphically Induced Representations of Exponential Solvable Lie Groups","authors":"Junko Inoue","doi":"10.1007/978-3-030-26562-5_5","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_5","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116267443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Monomial Representations of Discrete Type of an Exponential Solvable Lie Group 指数可解李群离散型的单项式表示
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_1
A. Baklouti, H. Fujiwara, J. Ludwig
{"title":"Monomial Representations of Discrete Type of an Exponential Solvable Lie Group","authors":"A. Baklouti, H. Fujiwara, J. Ludwig","doi":"10.1007/978-3-030-26562-5_1","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_1","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129143535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmonic Analysis for 4-Dimensional Real Frobenius Lie Algebras 四维实Frobenius李代数的调和分析
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_4
E. Kurniadi, H. Ishi
{"title":"Harmonic Analysis for 4-Dimensional Real Frobenius Lie Algebras","authors":"E. Kurniadi, H. Ishi","doi":"10.1007/978-3-030-26562-5_4","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_4","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131624816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Quantization of Color Lie Bialgebras 彩色李双代数的量化
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_3
B. Hurle, A. Makhlouf
{"title":"Quantization of Color Lie Bialgebras","authors":"B. Hurle, A. Makhlouf","doi":"10.1007/978-3-030-26562-5_3","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_3","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127858317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lagrangian Submanifolds of Standard Multisymplectic Manifolds 标准多辛流形的拉格朗日子流形
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_8
Gabriel Sevestre, Tilmann Wurzbacher
{"title":"Lagrangian Submanifolds of Standard Multisymplectic Manifolds","authors":"Gabriel Sevestre, Tilmann Wurzbacher","doi":"10.1007/978-3-030-26562-5_8","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_8","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123897133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Poisson Characteristic Variety of Unitary Irreducible Representations of Exponential Lie Groups 指数李群的幺正不可约表示的泊松特征变化
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-12-17 DOI: 10.1007/978-3-030-26562-5_9
A. Baklouti, Sami Dhieb, D. Manchon
{"title":"The Poisson Characteristic Variety of Unitary Irreducible Representations of Exponential Lie Groups","authors":"A. Baklouti, Sami Dhieb, D. Manchon","doi":"10.1007/978-3-030-26562-5_9","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_9","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122535938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherical Functions for Small K-Types 小k型的球面函数
Geometric and Harmonic Analysis on Homogeneous Spaces Pub Date : 2017-10-09 DOI: 10.1007/978-3-030-26562-5_6
H. Oda, N. Shimeno
{"title":"Spherical Functions for Small K-Types","authors":"H. Oda, N. Shimeno","doi":"10.1007/978-3-030-26562-5_6","DOIUrl":"https://doi.org/10.1007/978-3-030-26562-5_6","url":null,"abstract":"","PeriodicalId":331977,"journal":{"name":"Geometric and Harmonic Analysis on Homogeneous Spaces","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117248614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信