A. Hassan, M. Ijaz, A. Sattar, A. Sher, Samiullah, Iqra Rasheed, M. Saleem, I. Hussain
{"title":"Abiotic Stress Tolerance in Cotton","authors":"A. Hassan, M. Ijaz, A. Sattar, A. Sher, Samiullah, Iqra Rasheed, M. Saleem, I. Hussain","doi":"10.5772/intechopen.89622","DOIUrl":"https://doi.org/10.5772/intechopen.89622","url":null,"abstract":"Cotton ( Gossypium hirsutum L.) is a vital fiber crop that is being cultivated under diverse climatic conditions across the globe. The demand for cotton and its by-products is increasing day by day due to more consumption of this fiber in the textile industry and the utilization of cotton seed as a source of edible oil. However, the average seed cotton yield in the world is below that of the potential yield of cultivars. The factors responsible for low yield includes shortage of approved seed, pest and disease attack, weed infestation, unwise use of nutrients, and the incidence of abiotic stresses (including drought, heat, and salinity). Among these, the abiotic stresses are a single major factor, which is responsible for reducing the yield now and will affect the productivity of cotton in future. In this scenario, it is necessary to adopt ways to improve the tolerance of cotton against abiotic stresses. The strategies for improving tolerance against abiotic stresses may include the wise use of macro-and micronutrients, the use of osmoprotectants, the use of arbuscular mycorrhizal fungi, and the plant-growth promoting rhizobacteria.","PeriodicalId":326326,"journal":{"name":"Advances in Cotton Research","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125332341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analyzing Chemical and Physical Variations in Selected Cotton Wires at Ambient Temperatures and Conditions","authors":"C. S. Souza, J. U. Mendes","doi":"10.5772/intechopen.86012","DOIUrl":"https://doi.org/10.5772/intechopen.86012","url":null,"abstract":"Cotton, a hydrophilic textile fiber, has unstable characteristics and, for this rea-son, it varies its properties according to the environmental changes. Moisture and temperature are the two most important factors that lead a cotton spinning sector and influence its quality. Those two properties can change the entire spinning process. Understanding this, moisture and temperature must be kept under control during the spinning process; once the environment is hot and dry, the cotton yarns absorb moisture and lose the minimal consistency. According to this information, this chapter was developed testing four types of cotton yarns, one kind of cotton from Brazil and the others from Egypt. The yarns were exposed to different temperatures and moisture in five different tests, and in each test, six samples were examined through physical and mechanical tests: resistance, strength, tenacity, yarn’s hairiness, yarn’s evenness, and yarn’s twisting. All the analyses were accom-plished at Laboratório de Mecânica dos Fluidos and at COATS Corrente S.A., where it was possible to use the equipment which were fundamental to development of this chapter, such as the STATIMAT ME, which measures strength, tenacity; Zweigler G566, which measure hairiness in the yarn; a skein machine; and a twisting machine. The analyses revealed alterations in the yarn’s characteristics in a direct way; for example, as moisture and temperature were increased, the yarn’s strength, tenacity, and hairiness were increased as well. Having the results of all analyses, it is possible to say that with a relatively low temperature and high humidity, cotton yarns have the best performance.","PeriodicalId":326326,"journal":{"name":"Advances in Cotton Research","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128004874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioenergy Recovery from Cotton Stalk","authors":"R. A. Afif, C. Pfeifer, T. Pröll","doi":"10.5772/INTECHOPEN.88005","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88005","url":null,"abstract":"Cotton stalk (CS) plant residue left in the field following harvest must be buried or burned to prevent it from serving as an overwintering site for insects such as the pink bollworm (PBW). This pest incurs economic costs and detrimental environmental effects. However, CS contains lignin and carbohydrates, like cellulose and hemicelluloses, which can be converted into a variety of usable forms of energy. Thermochemical or biochemical processes are considered technologically advanta-geous solutions. This chapter reviews potential energy generation from cotton stalks through combustion, hydrothermal carbonization, pyrolysis, fermentation, and anaerobic digestion technologies, focusing on the most relevant technologies and on the properties of the different products. The chapter is concluded with some comments on the future potential of these processes.","PeriodicalId":326326,"journal":{"name":"Advances in Cotton Research","volume":"140 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116731045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Shahid, M. Shakeel, M. Farooq, Saghir Ahmad, A. Mahmood
{"title":"Tritrophic Association between Bt Cotton, Arthropod Pest and Natural Enemies","authors":"M. Shahid, M. Shakeel, M. Farooq, Saghir Ahmad, A. Mahmood","doi":"10.5772/INTECHOPEN.85214","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85214","url":null,"abstract":"Benefits and harmful effects of Bt adoption technology are mainly related with cotton production where lot of insecticides are needed for management of arthropod herbivory and possible negative impact of crystalline Bt protein on parasitoids and predators is real. Therefore, current review information was focused that Bt should be selective for natural enemies and information was collected from different sources especially CAB abstracts as well as citations from many review articles and books. Usefulness of integrated pest management was highlighted with updated literature to cover the contents.","PeriodicalId":326326,"journal":{"name":"Advances in Cotton Research","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121857665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}