{"title":"Review of Injected Oscillators","authors":"A. Hazeri","doi":"10.5772/intechopen.91687","DOIUrl":"https://doi.org/10.5772/intechopen.91687","url":null,"abstract":"Oscillators are critical components in electrical and electronic engineering and other engineering and sciences. Oscillators are classified as free-running oscillators and injected oscillators. This chapter describes the background necessary for the analysis and design of injected oscillators. When an oscillator is injected by an external periodic signal mentioned as an injection signal, it is called an injected oscillator. Consequently, two phenomena occur in the injected oscillators: (I) pulling phenomena and (II) locking phenomena. For locking phenomena, the oscillation frequency of the injection signal must be near free-running oscillation frequency or its sub-/super-harmonics. Due to these phenomena are nonlinear phenomena, it is tough to achieve the exact equation or closed-form equation of them. Therefore, researchers are scrutinizing them by different analytical and numerical methods for accomplishing an exact inside view of their performances. In this chapter, injected oscillators are investigated in two main subjects: first, analytical methods on locking and pulling phenomena are reviewed, and second, applications of injected oscillators are reviewed such as injection-locked frequency dividers at the latter. Furthermore, methods of enhancing the locking range are introduced.","PeriodicalId":320164,"journal":{"name":"Modulation in Electronics and Telecommunications [Working Title]","volume":"56 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123015336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashish Singh, Krishnananda Shet, Durga Prasad, A. Pandey, M. Aneesh
{"title":"A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands","authors":"Ashish Singh, Krishnananda Shet, Durga Prasad, A. Pandey, M. Aneesh","doi":"10.5772/intechopen.91365","DOIUrl":"https://doi.org/10.5772/intechopen.91365","url":null,"abstract":"In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures.","PeriodicalId":320164,"journal":{"name":"Modulation in Electronics and Telecommunications [Working Title]","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132594733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perfect Signal Transmission Using Adaptive Modulation and Feedback","authors":"A. Platonov","doi":"10.5772/INTECHOPEN.90516","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.90516","url":null,"abstract":"The research results show that adaptive adjusting of modulators over feedback enables development of the “ perfect ” communication system (CS) transmitting analog and digital signals in real-time without coding with a bit rate equal to the forward channel capacity and limit energy spectral efficiency. These and other feasibilities unattainable for known CS are the result of transition from the direct transmission of samples of the input signal to the transmission of sequences of their estimation errors cyclically formed at the input of forward transmitter (FT) modulator. Each transmitted error is formed as a difference between the value of input sample and its current estimate computed in the receiver in previous cycle and delivered to FT over feedback. Growing accuracy of estimates decreases estimation errors and permits their transmission permanently increasing the modulation index and maximizing the amount of information delivered to the receiver. Unlike CS with coding, adaptive feedback CS (AFCS) can be optimized using Bayesian estimation and information theory. Absence of coders simplifies the construction of FT and reduces their energy consumption and cost. Moreover, adaptive properties of AFCS permit to maintain the perfect mode of transmission in every scenario of application. The chapter presents analytical backgrounds, experiments results and research genesis including the reasons for absence of AFCS in modern communications.","PeriodicalId":320164,"journal":{"name":"Modulation in Electronics and Telecommunications [Working Title]","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115363420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Phase-Modulation Techniques","authors":"Ramón José Pérez Menéndez","doi":"10.5772/intechopen.90343","DOIUrl":"https://doi.org/10.5772/intechopen.90343","url":null,"abstract":"Optical phase-modulation technique is a very powerful tool used in a wide variety of high performance photonic systems. Fiber-optic sensors and gyroscopes, integrated-optics sensors, or high-performance photonic integrated circuits are some examples of photonic systems where the optical phase-modulation technique can be efficiently applied. In time, such a photonic system can be integrated as the core part of some specific applications like biosensors, 5G advanced optical com-munication devices, gyroscopes, or high-performance computation devices. In this work, the main optical phase-modulation techniques are analyzed. Also, a study of the most significant applications of this technique is made, relating it to the most appropriate type in each case.","PeriodicalId":320164,"journal":{"name":"Modulation in Electronics and Telecommunications [Working Title]","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123181465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Digital Algebraic Method for Processing Complex Signals for Radio Monitoring Systems","authors":"Sergey Rassomakhin","doi":"10.5772/INTECHOPEN.85590","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85590","url":null,"abstract":"The methods of processing digital samples of complex structure signals with unknown parameters are considered. With the use of algebraic methods, the following tasks are sequentially solved: clock synchronization, determining the range of carrier frequencies, the multiplicity of phase modulation, and obtaining a stream of information bits. The methods for improving the quality of processing digital samples of signals based on solving special overdetermined systems of linear equations are proposed. The estimation of efficiency of the offered method is carried out by an imitation statistical modeling. The advantages of the proposed methods of signal processing for the telecommunications and radio monitoring systems are shown.","PeriodicalId":320164,"journal":{"name":"Modulation in Electronics and Telecommunications [Working Title]","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115014101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}