Bayesian Inference on Complicated Data最新文献

筛选
英文 中文
Bayesian Analysis for Random Effects Models 随机效应模型的贝叶斯分析
Bayesian Inference on Complicated Data Pub Date : 2020-06-16 DOI: 10.5772/intechopen.88822
Junshan Shen, Catherine C Liu
{"title":"Bayesian Analysis for Random Effects Models","authors":"Junshan Shen, Catherine C Liu","doi":"10.5772/intechopen.88822","DOIUrl":"https://doi.org/10.5772/intechopen.88822","url":null,"abstract":"Random effects models have been widely used to analyze correlated data sets, and Bayesian techniques have emerged as a powerful tool to fit the models. How-ever, there has been scarce literature that systematically reviews and summarizes the recent advances of Bayesian analyses of random effects models. This chapter reviews the use of the Dirichlet process mixture (DPM) prior to approximate the distribution of random errors within the general semiparametric random effects models with parametric random effects for longitudinal data setting and failure time setting separately. In a survival setting with clusters, we propose a new class of nonparametric random effects models which is motivated from the accelerated failure models. We employ a beta process prior to tact clustering and estimation simultaneously. We analyze a new data set integrated from Alzheimer ’ s disease (AD) study to illustrate the presented model and methods.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125138346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Patient Bayesian Inference: Cloud-Based Healthcare Data Analysis Using Constraint-Based Adaptive Boost Algorithm 患者贝叶斯推断:使用基于约束的自适应Boost算法的基于云的医疗保健数据分析
Bayesian Inference on Complicated Data Pub Date : 2020-05-14 DOI: 10.5772/intechopen.91171
Shahid Naseem
{"title":"Patient Bayesian Inference: Cloud-Based Healthcare Data Analysis Using Constraint-Based Adaptive Boost Algorithm","authors":"Shahid Naseem","doi":"10.5772/intechopen.91171","DOIUrl":"https://doi.org/10.5772/intechopen.91171","url":null,"abstract":"Cloud-based healthcare data are a form of distributed data over the internet. The internet has become the most vulnerable part of critical healthcare infrastructures. Healthcare data are considered to be sensitive information, which can reveal a lot about a patient. For healthcare data, apart from confidentiality, privacy and protection of data are very sensitive issues. Proactive measures such as early warning are required to reduce the risk of patient ’ s data violation. This chapter investigates the ability of Patient Bayesian Inference (PBI) for network scenario analysis with violation of patient data to produce early warning. The Bayesian inference allows modeling the uncertainties that come with the problem of dealing with missing data, allows integrating data from remote nodes, and explicitly indicates depen-dence and independence. The use of constraint-based adaptive boost algorithm can demonstrate the patient ’ s Bayesian inference performance in the real-world datasets from healthcare data.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128758713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Brief Tour of Bayesian Sampling Methods 简要介绍贝叶斯抽样方法
Bayesian Inference on Complicated Data Pub Date : 2020-04-14 DOI: 10.5772/intechopen.91451
Michelle Y. Wang, Trevor Park
{"title":"A Brief Tour of Bayesian Sampling Methods","authors":"Michelle Y. Wang, Trevor Park","doi":"10.5772/intechopen.91451","DOIUrl":"https://doi.org/10.5772/intechopen.91451","url":null,"abstract":"Unlike in the past, the modern Bayesian analyst has many options for approxi-mating intractable posterior distributions. This chapter briefly summarizes the class of posterior sampling methods known as Markov chain Monte Carlo, a type of dependent sampling strategy. Varieties of algorithms exist for constructing chains, and we review some of them here. Such methods are quite flexible and are now used routinely, even for relatively complicated statistical models. In addition, extensions of the algorithms have been developed for various goals. General-purpose software is currently also available to automate the construction of samplers, freeing the analyst to focus on model formulation and inference.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125425244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Review on the Exact Monte Carlo Simulation 精确蒙特卡罗模拟研究进展
Bayesian Inference on Complicated Data Pub Date : 2019-11-13 DOI: 10.5772/intechopen.88619
Hongsheng Dai
{"title":"A Review on the Exact Monte Carlo Simulation","authors":"Hongsheng Dai","doi":"10.5772/intechopen.88619","DOIUrl":"https://doi.org/10.5772/intechopen.88619","url":null,"abstract":"Perfect Monte Carlo sampling refers to sampling random realizations exactly from the target distributions (without any statistical error). Although many different methods have been developed and various applications have been implemented in the area of perfect Monte Carlo sampling, it is mostly referred by researchers to coupling from the past (CFTP) which can correct the statistical errors for the Monte Carlo samples generated by Markov chain Monte Carlo (MCMC) algorithms. This paper provides a brief review on the recent developments and applications in CFTP and other perfect Monte Carlo sampling methods.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"26 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132871510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the Impact of the Choice of the Prior in Bayesian Statistics 论贝叶斯统计中先验选择的影响
Bayesian Inference on Complicated Data Pub Date : 2019-09-21 DOI: 10.5772/intechopen.88994
Fatemeh Ghaderinezhad, Christophe Ley
{"title":"On the Impact of the Choice of the Prior in Bayesian Statistics","authors":"Fatemeh Ghaderinezhad, Christophe Ley","doi":"10.5772/intechopen.88994","DOIUrl":"https://doi.org/10.5772/intechopen.88994","url":null,"abstract":"A key question in Bayesian analysis is the effect of the prior on the posterior, and how we can measure this effect. Will the posterior distributions derived with distinct priors become very similar if more and more data are gathered? It has been proved formally that, under certain regularity conditions, the impact of the prior is waning as the sample size increases. From a practical viewpoint it is more important to know what happens at finite sample size n. In this chapter, we shall explain how we tackle this crucial question from an innovative approach. To this end, we shall review some notions from probability theory such as the Wasserstein distance and the popular Stein's method, and explain how we use these a priori unrelated concepts in order to measure the impact of priors. Examples will illustrate our findings, including conjugate priors and the Jeffreys prior.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122494930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Bayesian Inference of Gene Regulatory Network 基因调控网络的贝叶斯推断
Bayesian Inference on Complicated Data Pub Date : 2019-08-28 DOI: 10.5772/INTECHOPEN.88799
Xi Chen, J. Xuan
{"title":"Bayesian Inference of Gene Regulatory Network","authors":"Xi Chen, J. Xuan","doi":"10.5772/INTECHOPEN.88799","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88799","url":null,"abstract":"Gene regulatory networks (GRN) have been studied by computational scientists and biologists over 20 years to gain a fine map of gene functions. With large-scale genomic and epigenetic data generated under diverse cells, tissues, and diseases, the integrative analysis of multi-omics data plays a key role in identifying casual genes in human disease development. Bayesian inference (or integration) has been successfully applied to inferring GRNs. Learning a posterior distribution than making a single-value prediction of model parameter makes Bayesian inference a more robust approach to identify GRN from noisy biomedical observations. Moreover, given multi-omics data as input and a large number of model parameters to estimate, the automatic preference of Bayesian inference for simple models that sufficiently explain data without unnecessary complexity ensures fast convergence to reliable results. In this chapter, we introduced GRN modeling using hierarchical Bayesian network and then used Gibbs sampling to identify network variables. We applied this model to breast cancer data and identified genes relevant to breast cancer recurrence. In the end, we discussed the potential of Bayesian inference as well as Bayesian deep learning for large-scale and complex GRN inference.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"220 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122398362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Bayesian Posterior Estimators under Six Loss Functions for Unrestricted and Restricted Parameter Spaces 六种损失函数下无限制参数空间的贝叶斯后验估计
Bayesian Inference on Complicated Data Pub Date : 2019-08-12 DOI: 10.5772/INTECHOPEN.88587
Ying-Ying Zhang
{"title":"The Bayesian Posterior Estimators under Six Loss Functions for Unrestricted and Restricted Parameter Spaces","authors":"Ying-Ying Zhang","doi":"10.5772/INTECHOPEN.88587","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88587","url":null,"abstract":"In this chapter, we have investigated six loss functions. In particular, the squared error loss function and the weighted squared error loss function that penalize overestimation and underestimation equally are recommended for the unrestricted parameter space (cid:1) ∞ ; ∞ ð Þ ; Stein ’ s loss function and the power-power loss function, which penalize gross overestimation and gross underestimation equally, are recommended for the positive restricted parameter space 0 ; ∞ ð Þ ; the power-log loss function and Zhang ’ s loss function, which penalize gross overestimation and gross underestimation equally, are recommended for 0 ; 1 ð Þ . Among the six Bayesian estimators that minimize the corresponding posterior expected losses (PELs), there exist three strings of inequalities. However, a string of inequalities among the six smallest PELs does not exist. Moreover, we summarize three hierarchical models where the unknown parameter of interest belongs to 0 ; ∞ ð Þ , that is, the hierarchical normal and inverse gamma model, the hierarchical Poisson and gamma model, and the hierarchical normal and normal-inverse-gamma model. In addition, we summarize two hierarchical models where the unknown parameter of interest belongs to 0 ; 1 ð Þ , that is, the beta-binomial model and the beta-negative binomial model. For empirical Bayesian analysis of the unknown parameter of interest of the hierarchical models, we use two common methods to obtain the estimators of the hyperparameters, that is, the moment method and the maximum likelihood estimator (MLE) method.","PeriodicalId":306321,"journal":{"name":"Bayesian Inference on Complicated Data","volume":"434 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115922621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信