{"title":"CO2 Miscible Flooding for Enhanced Oil Recovery","authors":"A. N. El-hoshoudy, S. Desouky","doi":"10.5772/INTECHOPEN.79082","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79082","url":null,"abstract":"Carbon capture aims to mitigate the emission of CO2 by capturing it at the point of combustion then storing it in geological reservoirs or applied through enhanced oil recovery (EOR) in a technology known as miscible flooding, so reduce CO2 atmospheric emissions. Miscible CO2-EOR employs supercritical CO2 to displace oil from a depleted oil reservoir. CO2 improve oil recovery by dissolving in, swelling, and reducing the oil viscosity. Hydrocarbon gases (natural gas and flue gas) used for miscible oil displacement in some large reservoirs. These displacements may simply amount to “pressure maintenance” in the reservoir. In such flooding techniques, the minimum miscibility pressure determined through multiple contact experiments and swelling test to determine the optimum injection conditions.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127685536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial Tension and Contact Angle Data Relevant to Carbon Sequestration","authors":"P. Bikkina, Imran K. Shaik","doi":"10.5772/INTECHOPEN.79414","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79414","url":null,"abstract":"Interfacial tension (IFT) between “native reservoir fluid” and “injected CO2” and the contact angle (CA) among the reservoir rock, native reservoir fluid, and injected CO2 are major factors that dictate the relative permeability and capillary pressure characteristics which in turn control the fluid flow and distribution characteristics in the reservoir and cap rocks. This chapter is a comprehensive review on the state-of-the-art of the experimentally measured and theoretically predicted IFT and CA data of water/brineCO2-quartz/calcite/mica systems that are relevant to CO2 sequestration. Experimental techniques used to generate the IFT and CA data and details of molecular simulations used to predict the data are discussed. Respective comparisons of the IFT and CA data reported by various research groups are also made. Possible reasons for disagreements in the published literature are discussed, and suggestions are made for future research in this area to address the potential technical issues in order to obtain reproducible data.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127784575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geophysical Monitoring of CO2 Injection at Citronelle Field, Alabama","authors":"Shen-En Chen, Yangguang Liu","doi":"10.5772/INTECHOPEN.78386","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78386","url":null,"abstract":"Carbon dioxide (CO2) injection at the Citronelle oil field in Alabama has been deployed to determine the feasibility of carbon storage and enhanced oil recovery (EOR) in the depleted oil field. Citronelle is a small size city right above the oil field, hence, to detect geohazard risks, geophysical testing method using wireless sensor, and passive seismic technique is used: the non-intrusive measurements were made at well sites along two linear arrays. The outcomes of the geophysical monitoring at the Citronelle oil field are shear-wave velocity profiles that are correlated to the static stress distribution at different injection stages. Injection history interpretation using the stress wave monitoring indicates that CO2 injection resulted in the stressing of the strata.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115334174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Farooqi, M. Sabir, N. Zeeshan, Khurram Naveed, M. Hussain
{"title":"Enhancing Carbon Sequestration Using Organic Amendments and Agricultural Practices","authors":"Z. Farooqi, M. Sabir, N. Zeeshan, Khurram Naveed, M. Hussain","doi":"10.5772/INTECHOPEN.79336","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79336","url":null,"abstract":"Carbon sequestration (CS) is an important strategy for the mitigation of climate change (CC) as well as for improving the soil fertility of agricultural soils. Carbon sequestration in crop lands and rangelands requires a certain amount of organic matter (OM) presence in the soil called soil organic matter (SOM). Organic amendments like animal and poultry manures, the incorporation of different crop residues, different types of compost, sugar - cane bagasse, peat soils, different wood chips, biochar and good agricultural practices like cover crops, nutrient management, mulching, zero and no-tillage techniques, soil biota management and mulching are effectively used for this purpose. These enhance the SOM and improve the soil’s physical and chemical properties which help to sequester more C in soil which ultimately contributes towards CS and CC mitigation. cover cropping, green manuring, crop rotations, agro-forestry, soil rehabilitation, reclamation and use of salt-affected soils for forest plantations and crop production.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126197921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Chinade Abdullahi, C. Siwar, Mohamad Isma’ilShaharudin, I. Anizan
{"title":"Carbon Sequestration in Soils: The Opportunities and Challenges","authors":"Ahmed Chinade Abdullahi, C. Siwar, Mohamad Isma’ilShaharudin, I. Anizan","doi":"10.5772/INTECHOPEN.79347","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79347","url":null,"abstract":"Recently, the contributions of the soil in various ecosystems have become more prominent with the recognition of its role as a carbon sink and the potential of that in reducing the concentration of carbon dioxide (CO2), which is a vital greenhouse gas, from the atmosphere. Conversely, the soil capacity to increase the concentration of CO2 in the atmosphere through mineralization of organic matter is also a source of concern. Mineralization of only 10% of the soil organic carbon pool globally is believed to be equivalent to about 30 years of anthropogenic emissions. This underscores the need to preventing carbon loss (emission) from the soil resource. Globally, the soil contains a large carbon pool estimated at approximately 1500Gt of organic carbon in the first one meter of the soil profile. This is much higher than the 560 Gt of carbon (C) found in the biotic pool and twice more than atmospheric CO2. By holding this huge carbon stock, the soil is preventing carbon dioxide build up in the atmosphere which will confound the problem of climate change. There are a lot of strategies used in sequestering carbon in different soils, however, many challenges are being encountered in making them cost effective and widely acceptable.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122470820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Innovative Approach in Post Combustion Carbon Capture and Sequestration towards Reduction of Energy Penalty in Regeneration of Solvent","authors":"V. K. Sethi, P. Dutta","doi":"10.5772/INTECHOPEN.78394","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78394","url":null,"abstract":"India as a fast growing economy is pursuing strategic knowledge mission for focused research in the area of climate change. Our R&D in Carbon Capture & Sequestration (CCS) will be initially focused on post combustion carbon capture on coal fired power plants. India is 3rd largest emitter of world after China and US with a share of 6.9% in global emission of CO 2 , however, India’s per capita GHG emission is only 1.6 MT per annum (MTPA) which is well below the world average 7.5 MTPA. National Mission on Strategic Knowledge for Climate Change aims to develop a better understanding of Climate Science impacts and challenges. The planning commission has announced the Government’s interest in adding a ninth mission i.e. ‘Clean Coal Technologies mission’ that would include Carbon Capture & Sequestration. As regards Carbon Capture & Sequestration (CCS) on coal fired power plants in India is concerned, an innovative concept of integrating solar thermal for steam produc- tion will pave way for reducing energy penalty in regeneration of solvents from a level of over 15% to around 05%. This chapter deals with an innovative approach of CCS in which the major issues of energy penalty reduction have been taken care of through use of Solar Steam Generation, through concentrated solar plant (CSP) with 24 × 7 thermal energy storage (TES).","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131631634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Absorption by Aqueous Solution of Ammonia","authors":"G. Valenti, D. Bonalumi","doi":"10.5772/INTECHOPEN.78545","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78545","url":null,"abstract":"Carbon capture is proposed as a viable way of exploiting the fossil resources for power plants and industrial processes. The post-combustion capture by chemical absorption in amine aqueous solutions has been in use in chemical and petrochemical areas for decades. As an alternative, the absorption in aqueous ammonia has received great atten tion recently. The carbon capture by aqueous ammonia is based on the conventional absorption-regeneration scheme applied to the ternary system CO 2 –NH 3 –H 2 O. It can be implemented in a chilled and a cooled process, depending upon the temperatures in the absorber and, hence, the precipitation of salts. The process simulation can be conducted in two manners: the equilibrium and the rate-based approaches. The specific heat duty is as low as 3.0, for the cooled process, and 2.2 MJ/kg CO2 , for the chilled one. Moreover, the index SPECCA is as low as 2.6, for the cooled, and 2.9 MJ/kg CO2 , for the chilled one. The overall energy performances from the simulations in the rate-based approach, compared against those in the equilibrium approach, result only slightly penalized. From an eco- nomic perspective, the carbon capture via chemical absorption by aqueous ammonia is a feasible retrofitting solution, yielding a cost of electricity of 82.4 €/MWh e and of avoided CO 2 of 38.6 €/t CO2 for the chilled process.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123477042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tracking CO2 Migration in Storage Aquifer","authors":"L. Abidoye, D. Das","doi":"10.5772/INTECHOPEN.79296","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79296","url":null,"abstract":"Monitoring technologies for CO2 in geological carbon sequestration are based upon the physico-chemical and electromagnetic properties of the CO2-water/brine and rock system as well as the induced events such as micro-seismicity. As CO2 migrates in the subsurface, its interactions with elements like rock, water/brine can be used to track its presence and direction. For deep subsurface storage of CO2, methods like electrical resistivity tomography (ERT), seismicity, capillary pressure and relative permeability as well as geochemical measurements can be reliably employed in monitoring CO2. Other methods like membrane-sensor technique and gas accumulation chamber are mainly suitable for shallow geological sequestration. However, prior to the full-scale deployment, it is necessary to understand the principles of operations and limitations of the adopted technologies as well as obtain experimental and practical information from them. In the field application, pre-injection baseline assessment is necessary followed by critical assessments during the storage process and post-injection period. Accuracy in leakage quantification and identification of sinks are also important. Factors that can influence the results of these technologies include fluctuations of pressure, temperature, initial salinity level, initial pH level, porosity, fluid properties, porosity, tortuosity, pore size distribution, wettability, reservoir mineralogy and surface chemistry.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116987857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon Dioxide Utilization and Sequestration in Kerogen Nanopores","authors":"Cudjoe Sherifa, B. Reza","doi":"10.5772/INTECHOPEN.78235","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78235","url":null,"abstract":"Carbon dioxide (CO 2 ) has been injected into oil reservoirs to maximize production for decades. On the other hand, emitted CO 2 from industrial processes is captured and stored in geological formations to mitigate greenhouse gas effects. As such, greater attention is drawn to the potential of utilizing the captured CO 2 in EOR processes. A significant por - tion of the injected CO 2 remains trapped due to capillary forces and through dissolution in residual liquids. In organic-rich shales, the presence of isolated kerogen nanopores add to the sequestration process due to the adsorptive nature of the surface and its preference to CO 2 over methane (CH 4 ), in addition to the sealing capacities of these formations. This work summarizes the latest findings of the literature with the purpose of defining further areas of investigation to fully capitalize on the potential of CO 2 sequestration and utiliza- tion in kerogen nanopores.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124019169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blue Carbon on Polar and Subpolar Seabeds","authors":"D. Barnes","doi":"10.5772/INTECHOPEN.78237","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78237","url":null,"abstract":"When marine organisms eat and grow they capture and store carbon, termed blue carbon. Polar seas have extreme light climates and sea temperatures. Their continental shelves have amongst the most intense phytoplankton (algal) blooms. This carbon drawdown, storage and burial by biodiversity is a quantifiable ‘ecosystem service’. Most of that carbon sinks to be recycled by microbes, but some enters a wider foodweb of zooplankton and their predators or diverse seabed life. How much carbon becomes stored long term or buried to become genuinely sequestered varies with a wide range of factors, e.g. geography, history, substratum etc. The Arctic and Antarctic are dynamic and in a phase of rapid but contrasting, complex physical change and marine organismal carbon capture and storage is altering in response. For example, an ice shelf calving a 5000 km2 iceberg actually results in 106 tonnes of additional blue carbon per year. Polar blue carbon increases have resulted from new and longer climate-forced, phytoplankton blooms driven by sea ice losses and ice shelf collapses. Polar blue carbon gains with sea ice losses are probably the largest natural negative feedback against climate change. Here the current status, variability and future of polar blue carbon is considered.","PeriodicalId":303492,"journal":{"name":"Carbon Capture, Utilization and Sequestration","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117165188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}