Introduction to Number Theory最新文献

筛选
英文 中文
Indefinite Forms 不确定的形式
Introduction to Number Theory Pub Date : 2018-09-26 DOI: 10.1090/chel/384.h/04
{"title":"Indefinite Forms","authors":"","doi":"10.1090/chel/384.h/04","DOIUrl":"https://doi.org/10.1090/chel/384.h/04","url":null,"abstract":"","PeriodicalId":277341,"journal":{"name":"Introduction to Number Theory","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115107041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Δ=𝑏²-4𝑎𝑐* Δ=𝑏²- 4𝑎𝑐*
Introduction to Number Theory Pub Date : 2018-09-26 DOI: 10.1090/chel/384.h/06
{"title":"Δ=𝑏²-4𝑎𝑐*","authors":"","doi":"10.1090/chel/384.h/06","DOIUrl":"https://doi.org/10.1090/chel/384.h/06","url":null,"abstract":"","PeriodicalId":277341,"journal":{"name":"Introduction to Number Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133750266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tables
Introduction to Number Theory Pub Date : 2018-09-26 DOI: 10.1090/chel/384.h/07
{"title":"Tables","authors":"","doi":"10.1090/chel/384.h/07","DOIUrl":"https://doi.org/10.1090/chel/384.h/07","url":null,"abstract":"","PeriodicalId":277341,"journal":{"name":"Introduction to Number Theory","volume":"503 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120878397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic Reciprocity 二次互反性
Introduction to Number Theory Pub Date : 2018-09-26 DOI: 10.1090/chel/384.h/03
Jennifer Li
{"title":"Quadratic Reciprocity","authors":"Jennifer Li","doi":"10.1090/chel/384.h/03","DOIUrl":"https://doi.org/10.1090/chel/384.h/03","url":null,"abstract":"Quadratic Reciprocity is arguably the most important theorem taught in an elementary number theory course. Since Gauss' original 1796 proof (by induction!) appeared, more than 100 different proofs have been discovered. Here I present one proof which is not particularly well-known, due to George Rousseau [2]. (The proof was rediscovered more recently by (then) high-schooler Tim Kunisky [1].) Although not the shortest proof, it is the easiest to remember of all the elementary proofs I have encountered. In particular, it does not rely on Gauss' Lemma, or lattice counting, or Gauss sums; the only ingredients used in the proof are the Chinese Remainder Theorem, Wilson's Theorem, and Euler's Criterion. After proving Quadratic Reciprocity for the case of two odd primes, I'll show how to derive the 'supplementary' laws directly from the classical case. Let p and q be distinct odd primes. The Chinese Remainder Theorem asserts that the map σ : (Z/pqZ) × −→ (Z/pZ) × × (Z/qZ) × defined by σ(k) := (k, k) is a bijection. It follows that if we took half of (Z/pqZ) × , it would get mapped to half of (Z/pZ) × × (Z/qZ) ×. For example, set L := k ∈ (Z/pqZ) × : 1 ≤ k < pq 2 and R := (a, b) ∈ (Z/pZ) × × (Z/qZ) × : 1 ≤ b < q 2. A bit of thought shows that for each (a, b) ∈ R, there exists a unique k ∈ L such that σ(k) = ±(a, b). Thus we have (a,b)∈R (a, b) = k∈L (k, k), (1) where = ±1 and the products are taken in the group (Z/pZ) × × (Z/qZ) ×. Both sides of (1) simplify quite nicely. For brevity, set P := p−1 2 and Q := q−1 2. We have: (a,b)∈R (a, b) = a<p b<q/2","PeriodicalId":277341,"journal":{"name":"Introduction to Number Theory","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126212169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Class Group and Genera 类组和属
Introduction to Number Theory Pub Date : 2018-09-26 DOI: 10.1090/chel/384.h/05
{"title":"The Class Group and Genera","authors":"","doi":"10.1090/chel/384.h/05","DOIUrl":"https://doi.org/10.1090/chel/384.h/05","url":null,"abstract":"","PeriodicalId":277341,"journal":{"name":"Introduction to Number Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130021109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prime Numbers and Unique Factorization 素数与唯一因数分解
Introduction to Number Theory Pub Date : 2018-09-26 DOI: 10.1090/chel/384.h/01
{"title":"Prime Numbers and Unique\u0000 Factorization","authors":"","doi":"10.1090/chel/384.h/01","DOIUrl":"https://doi.org/10.1090/chel/384.h/01","url":null,"abstract":"","PeriodicalId":277341,"journal":{"name":"Introduction to Number Theory","volume":"1149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133928346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信