{"title":"Multimodal Classification of Mangoes","authors":"S. Dao","doi":"10.5772/INTECHOPEN.81356","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81356","url":null,"abstract":"Grading, sorting, and classification of agricultural products are important steps to ensure a profitable and sustainable food industry. Human-intensive labors are replaced with better devices/machines that can be used in-line and generate sufficiently fast measurements for a high production volume. Most previous works focused on only one of the external quality parameters, such as color, size, mass, shape, and defects. In this work, we proposed an integrated machine vision system that can grade, sort, and classify mangoes using multiple features including weight, size, and external defects. We found that weight estimation using our proposed algorithm based on visual information was not statistically different from that of a conventional weight measurement using a static digital load cell; the estimation error is relatively small (4–5%). We also constructed an artificial neural network model to classify mango having multiple types of external defect; the classification error is less than 8% for the worst possible case. The results indicate that our system shows a great potential to be used in a real industrial setting. Future work will aim to investigate other features such as ripeness and bruises to increase the effectiveness and practicality of the system.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126605357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introductory Chapter: Recent Development and Applications of Agricultural Robots","authors":"Baohua Zhang, Jun Zhou","doi":"10.5772/INTECHOPEN.81149","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81149","url":null,"abstract":"The robotics industry was originally developed to supplement or replace humans by doing dull, repetitive, dirty, or dangerous work [1]. Robot systems have broad application prospects in industry, agriculture, defense, and other fields. In the past decades, extensive research has been conducted on the applications of agricultural robots and automation to a variety of field and greenhouse operations, and technical fundamentals and their feasibility have been also widely demonstrated. Due to the unstructured environment, adverse interferences, as well as the complicated and diversified operation process, are the key in blocking its commercialization in robotic agricultural operations.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116286653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Shamshiri, I. Hameed, S. K. Balasundram, D. Ahmad, Cornelia Weltzien, M. Yamin
{"title":"Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture in Oil Palm Plantations","authors":"R. Shamshiri, I. Hameed, S. K. Balasundram, D. Ahmad, Cornelia Weltzien, M. Yamin","doi":"10.5772/INTECHOPEN.80936","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80936","url":null,"abstract":"Unmanned aerial vehicles carrying multimodal sensors for precision agriculture (PA) appli- cations face adaptation challenges to satisfy reliability, accuracy, and timeliness. Unlike ground platforms, UAV/drones are subjected to additional considerations such as payload, flight time, stabilization, autonomous missions, and external disturbances. For instance, in oil palm plantations (OPP), accruing high resolution images to generate multidimensional maps necessitates lower altitude mission flights with greater stability. This chapter addresses various UAV-based smart farming and PA solutions for OPP including health assessment and disease detection, pest monitoring, yield estimation, creation of virtual plantations, and dynamic Web-mapping. Stabilization of UAVs was discussed as one of the key factors for acquiring high quality aerial images. For this purpose, a case study was presented on stabilizing a fixed-wing Osprey drone crop surveillance that can be adapted as a remote sensing research platform. The objective was to design three controllers (including PID, LQR with full state feedback, and LQR plus observer) to improve the automatic flight mission. Dynamic equations were decoupled into lateral and longitudinal directions, where the longitudinal dynamics were modeled as a fourth order two-inputs-two-outputs system. State variables were defined as velocity, angle of attack, pitch rate, and pitch angle, all assumed to be available to the controller. A special case was considered in which only velocity and pitch rate were measurable. The control objective was to stabilize the system for a velocity step input of 10m/s. The performance of noise effects, model error, and complementary sensitivity was analyzed.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125580931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Bernad, P. Lepej, Č. Rozman, K. Pažek, J. Rakun
{"title":"An Evaluation of Three Different Infield Navigation Algorithms","authors":"P. Bernad, P. Lepej, Č. Rozman, K. Pažek, J. Rakun","doi":"10.5772/INTECHOPEN.79942","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79942","url":null,"abstract":"In this chapter, we present and evaluate three different infield navigation algorithms, based on the readings from a LIDAR sensor. All three algorithms are tested on a small field robot and used to autonomously drive the robot between the two adjacent rows of maze plants. The first algorithm is the simplest one and just takes distance read ings from the left and right side. If robot is not in the center of the mid-row space, it adjusts its course by turning the robot in the right direction accordingly. The second approach groups the left and right readings into two vertical lines by using least-square fit approach. According to the calculated distance and orientation to both lines, it adjusts the course of the robot. The third approach tries to fit an optimal triangle between the robot and the plants, revealing the most optimal one. Based on its shape, the course of the robot is adjusted. All three algorithms are tested in a simulated (ROS stage) and then in an outdoor (maze test field) environment comparing the optimal line with the actual calculated position of the robot. The tests prove that all three approaches work with an error of 0.041 ± 0.034 m for the first algorithm, 0.07 ± 0.059 m for the second, and 0.078 ± 0.055 m error for the third.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133429533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Agricultural Robot for Intelligent Detection of Pyralidae Insects","authors":"Zhuhua Hu, Boyi Liu, Yaochi Zhao","doi":"10.5772/INTECHOPEN.79460","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79460","url":null,"abstract":"The Pyralidae insects are one of the main pests in economic crops. However, the manual detection and identification of Pyralidae insects are labor intensive and inefficient, and subjective factors can influence recognition accuracy. To address these shortcomings, an insect monitoring robot and a new method to recognize the Pyralidae insects are presented in this chapter. Firstly, the robot gets images by performing a fixed action and detects whether there are Pyralidae insects in the images. The recognition method obtains the total probability image by using reverse mapping of histogram and multi-template images, and then image contour can be extracted quickly and accurately by using constraint Otsu. Finally, according to the Hu moment characters, perimeter, and area characters, the con- tours can be filtrated, and recognition results with triangle mark can be obtained. According to the recognition results, the speed of the robot car and mechanical arm can be adjusted adaptively. The theoretical analysis and experimental results show that the proposed scheme has high timeliness and high recognition accuracy in the natural planting scene.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127071145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amid Heravi, D. Ahmad, I. Hameed, R. Shamshiri, S. K. Balasundram, M. Yamin
{"title":"Development of a Field Robot Platform for Mechanical Weed Control in Greenhouse Cultivation of Cucumber","authors":"Amid Heravi, D. Ahmad, I. Hameed, R. Shamshiri, S. K. Balasundram, M. Yamin","doi":"10.5772/INTECHOPEN.80935","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80935","url":null,"abstract":"A prototype robot that moves on a monorail along the greenhouse for weed elimination between cucumber plants was designed and developed. The robot benefits from three arrays of ultrasonic sensors for weed detection and a PIC18 F4550-E/P microcontroller board for processing. The feedback from the sensors activates a robotic arm, which moves inside the rows of the cucumber plants for cutting the weeds using rotating blades. Several experiments were carried out inside a greenhouse to find the best combination of arm motor (AM) speed, blade rotation (BR) speed, and blade design. We assigned three BR speeds of 3500, 2500, and 1500 rpm, and two AM speed of 10 and 30 rpm to three blade designs of S-shape, triangular shape, and circular shape. Results indicated that different types of blades, different BR speed, and different AM speed had significant effects (P < 0.05) on the percentage of weeds cut (PWC); however, no significant interac - tion effects were observed. The comparison between the interaction effect of the factors (three blade designs, three BR speeds, and two AM speeds) showed that maximum mean PWC was equal to 78.2% with standard deviation of 3.9% and was achieved with the S-shape blade when the BR speed was 3500 rpm, and the AM speed was 10 rpm. Using this setting, the maximum PWC that the robot achieved in a random experiment was 95%. The lowest mean PWC was observed with the triangular-shaped blade (mean of 50.39% and SD = 1.86), which resulted from BR speed of 1500 rpm and AM speed of 30 rpm. This study can contribute to the commercialization of a reliable and affordable robot for automated weed control in greenhouse cultivation of cucumber.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131247084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariano Gonzalez-de-Soto, L. Emmi, P. González-De-Santos
{"title":"Hybrid-Powered Autonomous Robots for Reducing Both Fuel Consumption and Pollution in Precision Agriculture Tasks","authors":"Mariano Gonzalez-de-Soto, L. Emmi, P. González-De-Santos","doi":"10.5772/INTECHOPEN.79875","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79875","url":null,"abstract":"Environmental contamination and the resulting climate change are major concerns world- wide. Agricultural vehicles that use fossil fuels emit significant amounts of atmospheric pollutants. Thus, this study investigates techniques to reduce fuel consumption in robotic vehicles used for agricultural tasks and therefore reduce atmospheric emissions from these automated systems. A hybrid energy system for autonomous robots devoted to weed and pest control in agriculture is modeled and evaluated, and its exhaust emissions are compared with those of an internal combustion engine-powered system. Agricultural implements require power for hydraulic pumps and fans; this energy is conventionally provided by power take-off (PTO) systems, which waste substantial amounts of energy. In this work, we examine a solution by designing and assessing a hybrid energy system that omits the alternators from the original vehicle and modifies the agricultural imple - ments to replace the PTO power with electrical power. The hybrid energy system uses the original combustion engine of the tractor in combination with a new electrical energy system based on a hydrogen fuel cell. We analyze and compare the exhaust gases result ing from the use of (1) an internal combustion engine as the single power source and (2) the hybrid energy system. The results demonstrate that the hybrid energy system reduced emissions by up to approximately 50%.","PeriodicalId":276896,"journal":{"name":"Agricultural Robots - Fundamentals and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117080410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}