{"title":"On the Development and Application of FOG","authors":"Xuejuan Lin, Wenlong Han, Ke Chen, W. Zhang","doi":"10.5772/intechopen.88542","DOIUrl":"https://doi.org/10.5772/intechopen.88542","url":null,"abstract":"Gyroscope is a type of angular velocity measuring device, which can precisely determine the orientation of moving objects. It was first employed in navigation and later became an inertial navigation instrument widely used in modern aviation, aerospace, and national defense industries. As a vital representative of gyroscope, the fiber-optic gyroscope (FOG) has advantages in terms of compact structure, high precision, high sensitivity, and high environmental adaptability. FOG has been broadly utilized in many fields, and is also a key component of modern navigation instruments. In this paper, the history, classification, performance indicators, and application requirements of gyroscope are briefly summarized. The development history of FOG based on Sagnac effect is described in detail. The three generations of FOG are interferometric FOG, resonant FOG, and stimulated Brillouin scattering FOG. At the same time, this chapter summarizes the development and research situation of FOG in the United States, Japan, France, and other major developing countries, and compares the application of FOG in various international companies.","PeriodicalId":275738,"journal":{"name":"Gyroscopes - Principles and Applications","volume":"285 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116574505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IFOG and IORG Gyros: A Study of Comparative Performance","authors":"Ramón José Pérez Menéndez","doi":"10.5772/intechopen.89957","DOIUrl":"https://doi.org/10.5772/intechopen.89957","url":null,"abstract":"In this revision work, firstly classical structure and main performance parameters of interferometric fiber-optic gyroscope (IFOG) and integrated optics passive resonator gyroscope (IORG) are reviewed. Then, the main advanced models and performance parameters of these two types of rotation-rate inertial sensors are described, and finally the design trends of both types are analyzed. Taking as reference the performance parameters analyzed above, a comparative analysis between manufactured IFOG and IORG units of close geometrical dimensions is realized. This analysis leads ranking these devices into six classical levels of inertial performance: strategic grade, navigation grade, high-end tactical grade, tactical grade, industrial low-end tactical grade, and consumer grade. This classification allows to deduce the main application areas of both kinds of devices. This way, the impact of these sensors in applications such as aeronautics, aerospace navigation, mechanical micro-fabrication, tactical weapons, or, more recently, robotics can be disclosed.","PeriodicalId":275738,"journal":{"name":"Gyroscopes - Principles and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121956443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling of Inertial Rate Sensor Errors Using Autoregressive and Moving Average (ARMA) Models","authors":"Mundla Narasimhappa","doi":"10.5772/intechopen.86735","DOIUrl":"https://doi.org/10.5772/intechopen.86735","url":null,"abstract":"In this chapter, a low-cost micro electro mechanical systems (MEMS) gyroscope drift is modeled by time series model, namely, autoregressive-moving-average (ARMA). The optimality of ARMA (2, 1) model is identified by using minimum values of the Akaike information criteria (AIC). In addition, the ARMA model based Sage-Husa adaptive fading Kalman filter algorithm (SHAFKF) is proposed for minimizing the drift and random noise of MEMS gyroscope signal. The suggested algorithm is explained in two stages: (i) an adaptive transitive factor ( a 1 ) is introduced into a predicted state error covariance for adaption. (ii) The measurement noise covariance matrix is updated by another transitive factor ( a 2 ). The proposed algorithm is applied to MEMS gyroscope signals for reducing the drift and random noise in a static condition at room temperature. The Allan variance (AV) analysis is used to identify and quantify the random noise sources of MEMS gyro signal. The performance of the suggested algorithm is analyzed using AV for static signal. The experimental results demonstrate that the proposed algorithm performs better than CKF and a single transitive factor based adaptive SHFKF algorithm for reducing the drift and random noise in the static condition.","PeriodicalId":275738,"journal":{"name":"Gyroscopes - Principles and Applications","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121097286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyu Zhao, S. Qiu, Zhelong Wang, Ning Yang, Jie Li, Jianjun Wang
{"title":"Applications of MEMS Gyroscope for Human Gait Analysis","authors":"Hongyu Zhao, S. Qiu, Zhelong Wang, Ning Yang, Jie Li, Jianjun Wang","doi":"10.5772/INTECHOPEN.86837","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86837","url":null,"abstract":"After decades of development, quantitative instruments for human gait analysis have become an important tool for revealing underlying pathologies manifested by gait abnormalities. However, the gold standard instruments (e.g., optical motion capture systems) are commonly expensive and complex while needing expert operation and maintenance and thereby be limited to a small number of specialized gait labora-tories. Therefore, in current clinical settings, gait analysis still mainly relies on visual observation and assessment. Due to recent developments in microelectromechanical systems (MEMS) technology, the cost and size of gyroscopes are decreasing, while the accuracy is being improved, which provides an effective way for qualifying gait fea-tures. This chapter aims to give a close examination of human gait patterns (normal and abnormal) using gyroscope-based wearable technology. Both healthy subjects and hemiparesis patients participated in the experiment, and experimental results show that foot-mounted gyroscopes could assess gait abnormalities in both temporal and spatial domains. Gait analysis systems constructed of wearable gyroscopes can be more easily used in both clinical and home environments than their gold standard counterparts, which have few requirements for operation, maintenance, and working environment, thereby suggesting a promising future for gait analysis.","PeriodicalId":275738,"journal":{"name":"Gyroscopes - Principles and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115476740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}