Proceedings of IncoME-V & CEPE Net-2020最新文献

筛选
英文 中文
A Case Study of Anomaly Detection Based on Industrial Monitoring Data in Petrochemical Process 基于工业监测数据的石化过程异常检测实例研究
Proceedings of IncoME-V & CEPE Net-2020 Pub Date : 2020-04-15 DOI: 10.1007/978-3-030-75793-9_31
Xiaoxia Liang, F. Duan, I. Bennett, David
{"title":"A Case Study of Anomaly Detection Based on Industrial Monitoring Data in Petrochemical Process","authors":"Xiaoxia Liang, F. Duan, I. Bennett, David","doi":"10.1007/978-3-030-75793-9_31","DOIUrl":"https://doi.org/10.1007/978-3-030-75793-9_31","url":null,"abstract":"","PeriodicalId":266813,"journal":{"name":"Proceedings of IncoME-V & CEPE Net-2020","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123734962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Efficiency Energy Harvesting by Using Hydraulic Electromagnetic Regenerative Shock Absorber 基于液压电磁再生式减振器的高效能量收集
Proceedings of IncoME-V & CEPE Net-2020 Pub Date : 2020-04-15 DOI: 10.21203/rs.3.rs-34207/v1
M. Iqbal, Zhifei Wu, Khalid Mahmood
{"title":"A High-Efficiency Energy Harvesting by Using Hydraulic Electromagnetic Regenerative Shock Absorber","authors":"M. Iqbal, Zhifei Wu, Khalid Mahmood","doi":"10.21203/rs.3.rs-34207/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-34207/v1","url":null,"abstract":"\u0000 This article intends a hybrid energy harvesting shock absorber design which comprehends energy harvesting of automobile suspension vibration dissipation. A mathematical model of the energy harvesting prototype is established, and simulation results show that the dissipation energy can be recovered by varying the feed module, thereby got the damping forces ratio at different compression and extension stroke. The energy conversion from hydraulic energy to mechanical energy mainly then mechanical energy converted into electrical energy furthermore we can rechange our battery from this recovered energy. The advanced mathematical model and prototype proposed maximum ride comfort meanwhile recovered the suspension energy and fuel saving. This article shows the simulation results verifying it with prototype test results. The damping force of expansion stroke is higher than the damping force of compression stroke. The damping characteristics curves and speed characteristics curves verify the validity by simulation and prototyping damper at different amplitudes of off-road vehicles. The Hydraulic Electromagnetic Regenerative Shock Absorber (HESA) prototype characteristic is tested in which 65 watts recovered energy at 1.67 Hz excitation frequency. So, 14.65% maximum energy recovery efficiency got at 20 mm rod diameter and 8 cc/rev motor displacement. The damping characteristics of the HESA prototype examined and it has ideal performance as the standard requirements of the National Standard QC/T 491–1999.","PeriodicalId":266813,"journal":{"name":"Proceedings of IncoME-V & CEPE Net-2020","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121136936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信