{"title":"Stargaze","authors":"Patrick Tser Jern Kon, Diogo Barradas, Ang Chen","doi":"10.1145/3560826.3563382","DOIUrl":"https://doi.org/10.1145/3560826.3563382","url":null,"abstract":"Low-earth orbit (LEO) satellite constellations are a special type of cyber-physical systems. Their meteoric rise has led to the proposition of many novel use cases and applications. Recent research has also highlighted the broad and unique threat landscape afflicting LEO constellations. However, the CPS security community lacks an experimentation platform to thoroughly identify and explore attacks and their corresponding defenses. We report our experience in building such a platform and perform initial case studies.","PeriodicalId":253685,"journal":{"name":"Proceedings of the 4th Workshop on CPS & IoT Security and Privacy","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116321530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CloudPAD","authors":"Sanjeev Rao, Majid Ghaderi, Hongwen Zhang","doi":"10.1145/3560826.3563383","DOIUrl":"https://doi.org/10.1145/3560826.3563383","url":null,"abstract":"Modern attacks on Industrial Control Systems (ICSs) are the result of several colliding circumstances: historically insecure communication protocols, increased ICS connectivity, and the rise of state-sponsored attackers. Extensive research has been conducted on using anomaly detection (AD) to counter this; here, deviations from an ICS's normal operation are monitored to indicate potentially dangerous situations. However, most works either assume an on-site deployment, or focus only on the neural architecture and disregard the deployment environment altogether. For the former, failure to update local AD can result in otherwise preventable attacks going undetected; as for the latter, directly porting these architectures to a cloud deployment can result in stale predictions due to communication delays, timeout-induced gaps in predictions, and surcharges due to bandwidth costs. In this work, we presentCloudPAD, an ICS anomaly detection pipeline that accounts for the issues introduced by an off-premises deployment, which uses theClozeLSTM ---a neural network based on the Long Short-Term Memory (LSTM) architecture---to detect anomalies. We train and test theClozeLSTM on the Secure Water Treatment (SWaT) dataset, and show that it outperforms an advanced attention baseline, with a precision-recall AUC of 0.797 vs. 0.717. We also discuss measures to minimizeCloudPAD 's bandwidth consumption, and show that performance remains competitive with a maximum decrease in PR AUC by 0.01 when running in this mode.","PeriodicalId":253685,"journal":{"name":"Proceedings of the 4th Workshop on CPS & IoT Security and Privacy","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115027084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RoSym","authors":"Pegah Nikbakht Bideh, Christian Gehrmann","doi":"10.1145/3560826.3563381","DOIUrl":"https://doi.org/10.1145/3560826.3563381","url":null,"abstract":"Internet of Things (IoT) firmware upgrade has turned out to be a challenging task with respect to security. While Over-The-Air (OTA) software upgrade possibility is an essential feature to achieve security, it is also most sensitive to attacks and lots of different firmware upgrade attacks have been presented in the literature. Several security solutions exist to tackle these problems. We observe though that most prior art solutions are public key-based, they are not flexible with respect to firmware image distribution principles and it is challenging to make a design with good Denial-Of-Service (DoS) attacks resistance. Apart from often being rather resource demanding, a limitation with current public key-based solutions is that they are not quantum computer resistant. Hence, in this paper, we take a new look into the firmware upgrade problem and propose RoSym, a secure, firmware distribution principle agnostic, and DoS protected upgrade mechanism purely based on symmetric cryptography. We present an experimental evaluation on a real testbed environment for the scheme. The results show that the scheme is efficient in comparison to other state of the art solutions. We also make a formal security verification of RoSym showing that it is robust against different attacks.","PeriodicalId":253685,"journal":{"name":"Proceedings of the 4th Workshop on CPS & IoT Security and Privacy","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122015619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}