Oliver J Myers Abduljaleel Altememe, A. Hall, Abduljaleel Altememe
{"title":"Computational Fluid Dynamic Analysis of Flapping Wing of Micro Aerial Vehicle at Very Low Reynolds Numbers Turbulent Flow","authors":"Oliver J Myers Abduljaleel Altememe, A. Hall, Abduljaleel Altememe","doi":"10.18689/ijae-1000110","DOIUrl":"https://doi.org/10.18689/ijae-1000110","url":null,"abstract":"","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128704352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"UAV Dead Reckoning with and without using INS/GPS Integrated System in GPS denied Polar Regions","authors":"Ali Kissai, Milton Smith","doi":"10.18689/IJAE-1000109","DOIUrl":"https://doi.org/10.18689/IJAE-1000109","url":null,"abstract":"","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124486868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic Navigation System based on the use of Alternate Coordinate System and Polar Stereographic Projection for UAVs operating in Polar Regions","authors":"Ali Kissai, Milton Smith","doi":"10.18689/ijae-1000107","DOIUrl":"https://doi.org/10.18689/ijae-1000107","url":null,"abstract":"","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134487192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oliver J Myers Abduljaleel Altememe, A. Hall, Abduljaleel Altememe
{"title":"Preliminary Design and Computational Fluid Dynamic analysis of Flapping Wing of Micro Aerial Vehicle for Low Reynolds Numbers Regime","authors":"Oliver J Myers Abduljaleel Altememe, A. Hall, Abduljaleel Altememe","doi":"10.18689/ijae-1000106","DOIUrl":"https://doi.org/10.18689/ijae-1000106","url":null,"abstract":"This research describes the investigation of the behavior of the flow over a 2D Flapping airfoil for flapping wing of Micro Aerial Vehicles (FWMAV) at very low Reynolds number regieme. The behavior of the flow wake at the trailing edge is studied by the analysis of streamlines for each incidence angle and results are compared by the study of two different flapping airfoils at two different fluids. The use of Fluid Structure Interaction (FSI) simulation has shown accuracy in predicting lift and drag forces at different angles of attack for upstroke and down stroke. This work simulates a classical flow pattern (Von Karman Street) that can form as fluid flows past a flapping NACA0012 airfoil, and S1223 airfoil at low Reynolds numbers and low velocities. These two airfoils have been selected and investigated by using basic computational fluid dynamics and fluid structure interaction modules. The S1223 airfoil, designed by University of Illinois at Urbana and the NACA0012 airfoil were selected for their high lift characteristics at low Reynolds number regime. Simulations were also conducted to check the lift and drag forces for both airfoils at low Reynolds number regime. Velocity distributions were analyzed at different angles of attack for these airfoils. The magnitude and the frequencies of the oscillation generated by the fluid around the airfoils were computed and compared between the airfoils.","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132387608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"More Frequent Flight in the Ash Polluted Sky using Electrostatic Filter","authors":"A. Shahneh","doi":"10.18689/IJAE-1000105","DOIUrl":"https://doi.org/10.18689/IJAE-1000105","url":null,"abstract":",","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115740980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Cohesive Zone Modelling of Fracture","authors":"Yabin Yan Fulin Shang, Jiangyan Yang, F. Shang","doi":"10.18689/IJAE-1000104","DOIUrl":"https://doi.org/10.18689/IJAE-1000104","url":null,"abstract":"","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131338912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"When is the Design Complete?","authors":"Neil G. Siegel","doi":"10.18689/ijae-1000103","DOIUrl":"https://doi.org/10.18689/ijae-1000103","url":null,"abstract":"Almost every software-development and software-intensive system-development methodology calls for the design to reach some level of maturity before the team moves into software and system implementation. Yet data from many sources indicate that a large percentage of software and system-development programs encounter significant difficulties. Data from my own work fixing such problem programs indicates that the major recurring theme across such problem programs is that the design was inadequate for the task at hand; this, of course, should have been detected during the design phase, before the program moved on to implementation, integration, and test. In this paper, I examine indications from a number of real programs to determine why the design is so often inadequate; one of the key findings is that our standard methods, processes, indicators, and metrics for determining if the design is complete are seriously flawed. A proposal for better design-completion indicators is provided, and the implications for practice discussed.","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117170657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shock Waves: From Gas Dynamics to Granular Flows","authors":"X. Cui","doi":"10.18689/IJAE-1000102","DOIUrl":"https://doi.org/10.18689/IJAE-1000102","url":null,"abstract":"This short article briefly discusses some aspects in shock wave studies in recent years, in particular on the difference between gas dynamics and granular flow problems. It compares the relations of oblique shock waves, where weak, strong and detached shock waves can be observed in both gas dynamic and granular conditions. If the upstream Froude number of granular flow becomes infinitely large a granular shock wave would still remain attached and oblique around a wedge angle near 90°, however an attached gas dynamic shock wave is limited by a maximum wedge angle, say, of 30°. On the other hand, the shock standoff distance for a detached granular shock wave tends to become infinitely small with the increase of the upstream Froude number since it is associated with the flow height ratio across the shock wave.","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131027443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Technique for establishment of Aero-Elastic Model","authors":"Yun-hai Wang, Bing Zhang, Xianming Zhang, Qun Cai","doi":"10.18689/IJAE-1000101","DOIUrl":"https://doi.org/10.18689/IJAE-1000101","url":null,"abstract":"The subject interest of nonlinear unsteady aerodynamics is one of great interest in the aerospace community. The interest is due to the fact that nonlinear unsteady aerodynamic behavior can have a significant effect on the performance and stability of a flight vehicle. To deal with such the aero elastic problem one generally models it by establishing state space equations. In this study, a new technique for determination of transonic nonlinear lift was developed based on discrete reduced-order Volterra series instead of relying on classical approach “eigen system realization algorithm (ERA)”. In this model, one can find out that several time-delayed terms appear. Here we employ Taylor formula to expand these time-delayed terms at the current instant, and then they are vanished. In this study, we also explain how to identify discrete reducedorder kernels. As an example, the two sets of curves between the convolution kernel function method and CFD results match fine.","PeriodicalId":249261,"journal":{"name":"International Journal of Aeronautics and Aerospace Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129120349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}