{"title":"A model-based approach to fault-tolerant control","authors":"H. Niemann","doi":"10.2478/v10006-012-0005-x","DOIUrl":"https://doi.org/10.2478/v10006-012-0005-x","url":null,"abstract":"A model-based approach to fault-tolerant control A model-based controller architecture for Fault-Tolerant Control (FTC) is presented in this paper. The controller architecture is based on a general controller parameterization. The FTC architecture consists of two main parts, a Fault Detection and Isolation (FDI) part and a controller reconfiguration part. The theoretical basis for the architecture is given followed by an investigation of the single parts in the architecture. It is shown that the general controller parameterization is central in connection with both fault diagnosis as well as controller reconfiguration. Especially in relation to the controller reconfiguration part, the application of controller parameterization results in a systematic technique for switching between different controllers. This also allows controller switching using different sets of actuators and sensors.","PeriodicalId":239736,"journal":{"name":"Conference on Control and Fault Tolerant Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115378066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems","authors":"C. Edwards, H. Alwi, Chee Pin Tan","doi":"10.2478/v10006-012-0008-7","DOIUrl":"https://doi.org/10.2478/v10006-012-0008-7","url":null,"abstract":"Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of these ideas to aerospace systems, including piloted flight simulator results associated with the GARTEUR AG16 Action Group on Fault Tolerant Control. The results demonstrate a successful real-time implementation of the proposed fault tolerant control scheme on a motion flight simulator configured to represent the post-failure EL-AL aircraft.","PeriodicalId":239736,"journal":{"name":"Conference on Control and Fault Tolerant Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128535400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An LPV pole-placement approach to friction compensation as an FTC problem","authors":"R. Patton, Lejun Chen, S. Klinkhieo","doi":"10.2478/v10006-012-0011-z","DOIUrl":"https://doi.org/10.2478/v10006-012-0011-z","url":null,"abstract":"An LPV pole-placement approach to friction compensation as an FTC problem The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC) has been the subject of considerable interest in the recent literature. The current study is motivated by the need to develop model-based FTC schemes for systems that have no unique equilibria and are therefore difficult to linearise. Linear Parameter Varying (LPV) strategies are well suited to model-based control and fault estimation for such systems. This contribution involves pole-placement within suitable LMI regions, guaranteeing both stability and performance of a multi-fault LPV estimator employed within an FTC structure. The proposed design strategy is illustrated using a nonlinear two-link manipulator system with friction forces acting simultaneously at each joint. The friction forces, regarded as a special case of actuator faults, are estimated and their effect is compensated within a polytope controller system, yielding a robust form of active FTC that is easy to apply to real robot systems.","PeriodicalId":239736,"journal":{"name":"Conference on Control and Fault Tolerant Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121503564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensor network scheduling for identification of spatially distributed processes","authors":"D. Ucinski","doi":"10.2478/v10006-012-0002-0","DOIUrl":"https://doi.org/10.2478/v10006-012-0002-0","url":null,"abstract":"Sensor network scheduling for identification of spatially distributed processes The work treats the problem of fault detection for processes described by partial differential equations as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A simple node activation strategy is discussed for the design of a sensor network deployed in a spatial domain that is supposed to be used while detecting changes in the underlying parameters which govern the process evolution. The setting considered relates to a situation where from among a finite set of potential sensor locations only a subset of them can be selected because of the cost constraints. As a suitable performance measure, the Ds-optimality criterion defined on the Fisher information matrix for the estimated parameters is applied. The problem is then formulated as the determination of the density of gauged sites so as to maximize the adopted design criterion, subject to inequality constraints incorporating a maximum allowable sensor density in a given spatial domain. The search for the optimal solution is performed using a simplicial decomposition algorithm. The use of the proposed approach is illustrated by a numerical example involving sensor selection for a two-dimensional diffusion process.","PeriodicalId":239736,"journal":{"name":"Conference on Control and Fault Tolerant Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115272816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LPV design of fault-tolerant control for road vehicles","authors":"P. Gáspár, Z. Szabó, J. Bokor","doi":"10.2478/v10006-012-0013-x","DOIUrl":"https://doi.org/10.2478/v10006-012-0013-x","url":null,"abstract":"LPV design of fault-tolerant control for road vehicles The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions about necessary interventions into the vehicle motions and guarantee reconfigurable and fault-tolerant operation of the vehicle. The design of the proposed reconfigurable and fault-tolerant control is based on an LPV method that uses monitored scheduling variables during the operation of the vehicle.","PeriodicalId":239736,"journal":{"name":"Conference on Control and Fault Tolerant Systems","volume":"08 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127162390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear model predictive control of a boiler unit: A fault tolerant control study","authors":"K. Patan, J. Korbicz","doi":"10.2478/v10006-012-0017-6","DOIUrl":"https://doi.org/10.2478/v10006-012-0017-6","url":null,"abstract":"Nonlinear model predictive control of a boiler unit: A fault tolerant control study This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of different faulty situations, a fault compensation problem is also investigated. As the automatic control system can hide faults from being observed, the control system is equipped with a fault detection block. The fault detection module designed using the one-step ahead predictor and constant thresholds informs the user about any abnormal behaviour of the system even in the cases when faults are quickly and reliably compensated by the predictive controller.","PeriodicalId":239736,"journal":{"name":"Conference on Control and Fault Tolerant Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133518192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}