Stevens: Operations & Decision Sciences (Topic)最新文献

筛选
英文 中文
Efficient Simulation of Generalized SABR and Stochastic Local Volatility Models based on Markov Chain Approximations 基于马尔可夫链近似的广义SABR和随机局部波动模型的有效模拟
Stevens: Operations & Decision Sciences (Topic) Pub Date : 2020-09-12 DOI: 10.2139/ssrn.3691568
Zhenyu Cui, J. Kirkby, D. Nguyen
{"title":"Efficient Simulation of Generalized SABR and Stochastic Local Volatility Models based on Markov Chain Approximations","authors":"Zhenyu Cui, J. Kirkby, D. Nguyen","doi":"10.2139/ssrn.3691568","DOIUrl":"https://doi.org/10.2139/ssrn.3691568","url":null,"abstract":"Abstract We propose a novel Monte Carlo simulation method for two-dimensional stochastic differential equation (SDE) systems based on approximation through continuous-time Markov chains (CTMCs). Specifically, we propose an efficient simulation framework for asset prices under general stochastic local volatility (SLV) models arising in finance, which includes the Heston and the stochastic alpha beta rho (SABR) models as special cases. Our simulation algorithm is constructed based on approximating the latent stochastic variance process by a CTMC. Compared with time-discretization schemes, our method exhibits several advantages, including flexible boundary condition treatment, weak continuity conditions imposed on coefficients, and a second order convergence rate in the spatial grids of the approximating CTMC under suitable regularity conditions. Replacing the stochastic variance process with a discrete-state approximation greatly simplifies the direct sampling of the integrated variance, thus enabling a highly efficient simulation scheme. Extensive numerical examples illustrate the accuracy and efficiency of our estimator, which outperforms both biased and unbiased simulation estimators in the literature in terms of root mean squared error (RMSE) and computational time. This paper is focused primarily on the simulation of SDEs which arise in finance, but this new simulation approach has potential for applications in other contextual areas in operations research, such as queuing theory.","PeriodicalId":236790,"journal":{"name":"Stevens: Operations & Decision Sciences (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127521037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信