{"title":"Hydrolases: The most Diverse Class of Enzymes","authors":"E. Shukla, Ameya D. Bendre, Sushama M. Gaikwad","doi":"10.5772/intechopen.102350","DOIUrl":"https://doi.org/10.5772/intechopen.102350","url":null,"abstract":"Being the largest and most diverse class of enzymes, hydrolases offer an opportunity to explore the conformational diversity which forms the basis of their differential biological functions. In recent times, there is an urge to re-evaluate and update our existing knowledge on functional and conformational transitions of these enzymes, in the context of emerging scientific trends. In this chapter, we discuss hydrolases in terms of their diversity, classification, and different nomenclature styles that exist. Further, the concepts of protein stability and significance of studying the structure–function relationship of hydrolases are mentioned in detail taking serine protease as an example. The chapter talks about multiple ways by which an enzyme’s structure and function can be explored. The available information and literature survey on hydrolases have been systematically summarized for an easy understanding. Various experimental methods and techniques involving artificial intelligence are introduced in the later sections. The knowledge obtained by these strategies contributes to our current knowledge of the interplay between the stability, structure, and function of these enzymes. This, in turn, can help in designing and engineering these proteins with improved functional and structural features toward the goal of increasing their applicability in biotechnology.","PeriodicalId":222480,"journal":{"name":"Hydrolases [Working Title]","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124295811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"E3 Ligase for CENP-A (Part 1)","authors":"Y. Niikura, K. Kitagawa","doi":"10.5772/intechopen.101712","DOIUrl":"https://doi.org/10.5772/intechopen.101712","url":null,"abstract":"CENP-A is a centromere-specific histone H3 variant that is required to ensure kinetochore assembly for proper chromosome segregation and its function is highly conserved among different species including budding yeast, Saccharomyces cerevisiae. The budding yeast Saccharomyces cerevisiae has genetically defined point centromeres, unlike other eukaryotes. Although, most eukaryotic centromeres are maintained epigenetically, currently only budding yeast S. cerevisiae centromeres are known to be genetically specified by DNA sequence, The small size and sequence specificity of the budding yeast centromere has made yeast a powerful organism for its study in many aspects. Many post-translational modifications (PTMs) of CENP-A and their functions have been recently reported, and studies with budding yeast are providing insights into the role of CENP-A/Cse4 PTMs in kinetochore structure and function. Multiple functions are controlled especially by ubiquitylation and sumoylation by E3 ligases that control CENP-A protein has initially emerged in the budding yeast as an important regulatory mechanism. Here we focus on what is known about the budding yeast E3 ligases for CENP-A/Cse4 ubiquitylation and sumoylation and their biological functions and significance.","PeriodicalId":222480,"journal":{"name":"Hydrolases [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129947319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin Meghan Gladu, Iman Sayed, Michael Anthony Massiah
{"title":"Review of the Structural Basis of Human E2 Conjugating Enzymes in Complexed with RING E3 Ligases","authors":"Erin Meghan Gladu, Iman Sayed, Michael Anthony Massiah","doi":"10.5772/intechopen.101484","DOIUrl":"https://doi.org/10.5772/intechopen.101484","url":null,"abstract":"Protein ubiquitination is a post-translational modification that controls essential biological processes through its regulation of protein concentration, function, and cellular location. RING E3 ligases are a critical component of a three-enzyme cascade that facilitates the ubiquitination of proteins. RING-type E3 ligases represent one class of E3 ligases that function by binding the substrate protein and ubiquitin-conjugating enzymes (E2s). Proteins exhibiting RING-type E3 ligase activities do so via a domain that adopts a ββα-RING fold and coordinates two zinc ions. To date, structural studies show that the RING domain interacts with the catalytic domain of the E2 enzyme. The catalytic domain is approximately 150 amino acids and adopts a canonical structure consisting of four α-helices and 3–4 β-strands. Structural analyses of RING–E2 complexes reveal that RING domains interact on a similar surface of the E2 enzyme. We postulate that the mechanism of interaction between an E2 enzyme and its cognate RING E3 domain may contribute to the extent of substrate modification. In this review, we compare the primary and secondary structures of human E2 enzymes and examine their quaternary structure with RING domains. Our analyses reveal the interactions appear to be relatively conserved with similar types of amino acids involved.","PeriodicalId":222480,"journal":{"name":"Hydrolases [Working Title]","volume":"407 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122197116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}