Hydrolases [Working Title]最新文献

筛选
英文 中文
Hydrolases: The most Diverse Class of Enzymes 水解酶:最多样化的一类酶
Hydrolases [Working Title] Pub Date : 2022-01-31 DOI: 10.5772/intechopen.102350
E. Shukla, Ameya D. Bendre, Sushama M. Gaikwad
{"title":"Hydrolases: The most Diverse Class of Enzymes","authors":"E. Shukla, Ameya D. Bendre, Sushama M. Gaikwad","doi":"10.5772/intechopen.102350","DOIUrl":"https://doi.org/10.5772/intechopen.102350","url":null,"abstract":"Being the largest and most diverse class of enzymes, hydrolases offer an opportunity to explore the conformational diversity which forms the basis of their differential biological functions. In recent times, there is an urge to re-evaluate and update our existing knowledge on functional and conformational transitions of these enzymes, in the context of emerging scientific trends. In this chapter, we discuss hydrolases in terms of their diversity, classification, and different nomenclature styles that exist. Further, the concepts of protein stability and significance of studying the structure–function relationship of hydrolases are mentioned in detail taking serine protease as an example. The chapter talks about multiple ways by which an enzyme’s structure and function can be explored. The available information and literature survey on hydrolases have been systematically summarized for an easy understanding. Various experimental methods and techniques involving artificial intelligence are introduced in the later sections. The knowledge obtained by these strategies contributes to our current knowledge of the interplay between the stability, structure, and function of these enzymes. This, in turn, can help in designing and engineering these proteins with improved functional and structural features toward the goal of increasing their applicability in biotechnology.","PeriodicalId":222480,"journal":{"name":"Hydrolases [Working Title]","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124295811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
E3 Ligase for CENP-A (Part 1) CENP-A的E3连接酶(上)
Hydrolases [Working Title] Pub Date : 2022-01-24 DOI: 10.5772/intechopen.101712
Y. Niikura, K. Kitagawa
{"title":"E3 Ligase for CENP-A (Part 1)","authors":"Y. Niikura, K. Kitagawa","doi":"10.5772/intechopen.101712","DOIUrl":"https://doi.org/10.5772/intechopen.101712","url":null,"abstract":"CENP-A is a centromere-specific histone H3 variant that is required to ensure kinetochore assembly for proper chromosome segregation and its function is highly conserved among different species including budding yeast, Saccharomyces cerevisiae. The budding yeast Saccharomyces cerevisiae has genetically defined point centromeres, unlike other eukaryotes. Although, most eukaryotic centromeres are maintained epigenetically, currently only budding yeast S. cerevisiae centromeres are known to be genetically specified by DNA sequence, The small size and sequence specificity of the budding yeast centromere has made yeast a powerful organism for its study in many aspects. Many post-translational modifications (PTMs) of CENP-A and their functions have been recently reported, and studies with budding yeast are providing insights into the role of CENP-A/Cse4 PTMs in kinetochore structure and function. Multiple functions are controlled especially by ubiquitylation and sumoylation by E3 ligases that control CENP-A protein has initially emerged in the budding yeast as an important regulatory mechanism. Here we focus on what is known about the budding yeast E3 ligases for CENP-A/Cse4 ubiquitylation and sumoylation and their biological functions and significance.","PeriodicalId":222480,"journal":{"name":"Hydrolases [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129947319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of the Structural Basis of Human E2 Conjugating Enzymes in Complexed with RING E3 Ligases 人E2偶联酶与RING E3连接酶的结构基础综述
Hydrolases [Working Title] Pub Date : 2022-01-17 DOI: 10.5772/intechopen.101484
Erin Meghan Gladu, Iman Sayed, Michael Anthony Massiah
{"title":"Review of the Structural Basis of Human E2 Conjugating Enzymes in Complexed with RING E3 Ligases","authors":"Erin Meghan Gladu, Iman Sayed, Michael Anthony Massiah","doi":"10.5772/intechopen.101484","DOIUrl":"https://doi.org/10.5772/intechopen.101484","url":null,"abstract":"Protein ubiquitination is a post-translational modification that controls essential biological processes through its regulation of protein concentration, function, and cellular location. RING E3 ligases are a critical component of a three-enzyme cascade that facilitates the ubiquitination of proteins. RING-type E3 ligases represent one class of E3 ligases that function by binding the substrate protein and ubiquitin-conjugating enzymes (E2s). Proteins exhibiting RING-type E3 ligase activities do so via a domain that adopts a ββα-RING fold and coordinates two zinc ions. To date, structural studies show that the RING domain interacts with the catalytic domain of the E2 enzyme. The catalytic domain is approximately 150 amino acids and adopts a canonical structure consisting of four α-helices and 3–4 β-strands. Structural analyses of RING–E2 complexes reveal that RING domains interact on a similar surface of the E2 enzyme. We postulate that the mechanism of interaction between an E2 enzyme and its cognate RING E3 domain may contribute to the extent of substrate modification. In this review, we compare the primary and secondary structures of human E2 enzymes and examine their quaternary structure with RING domains. Our analyses reveal the interactions appear to be relatively conserved with similar types of amino acids involved.","PeriodicalId":222480,"journal":{"name":"Hydrolases [Working Title]","volume":"407 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122197116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信