{"title":"The fundamental de Rham periods","authors":"","doi":"10.2307/j.ctv1nj3416.8","DOIUrl":"https://doi.org/10.2307/j.ctv1nj3416.8","url":null,"abstract":"","PeriodicalId":218121,"journal":{"name":"Supersingular p-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128769306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounding periods at supersingular CM points","authors":"","doi":"10.2307/j.ctv1nj3416.11","DOIUrl":"https://doi.org/10.2307/j.ctv1nj3416.11","url":null,"abstract":"","PeriodicalId":218121,"journal":{"name":"Supersingular p-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121793301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The p-adic Waldspurger formula","authors":"Yifeng Liu, Shou-wu Zhang, Wei Zhang","doi":"10.1215/00127094-2017-0045","DOIUrl":"https://doi.org/10.1215/00127094-2017-0045","url":null,"abstract":"In this article, we study $p$-adic torus periods for certain $p$-adic valued functions on Shimura curves coming from classical origin. We prove a $p$-adic Waldspurger formula for these periods, generalizing the recent work of Bertolini, Darmon, and Prasanna. In pursuing such a formula, we construct a new anti-cyclotomic $p$-adic $L$-function of Rankin-Selberg type. At a character of positive weight, the $p$-adic $L$-function interpolates the central critical value of the complex Rankin-Selberg $L$-function. Its value at a Dirichlet character, which is outside the range of interpolation, essentially computes the corresponding $p$-adic torus period.","PeriodicalId":218121,"journal":{"name":"Supersingular p-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121853412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}