International Journal of Materials and Chemistry最新文献

筛选
英文 中文
Influence of Linear Flow Velocity of Uncracked Ammonia (NH3) Gas on Formation of Higher Nitrides, 𝛅-MoN and 𝛆-Fe2N, under Concentrated Solar Irradiation in the SF40 Solar Furnace at PSA SF40太阳炉中未裂解氨(NH3)气体线流速度对高浓度氮化物𝛅-MoN和𝛆-Fe2N形成的影响
International Journal of Materials and Chemistry Pub Date : 2019-06-01 DOI: 10.5923/j.ijmc.20190901.01
N. Shohoji, Fernando Almeida Costa Oliveira, J. Galindo, Jorge Cruz Fernandes, José Rodríguez, I. Cañadas, L. Guerra Rosa
{"title":"Influence of Linear Flow Velocity of Uncracked Ammonia (NH3) Gas on Formation of Higher Nitrides, 𝛅-MoN and 𝛆-Fe2N, under Concentrated Solar Irradiation in the SF40 Solar Furnace at PSA","authors":"N. Shohoji, Fernando Almeida Costa Oliveira, J. Galindo, Jorge Cruz Fernandes, José Rodríguez, I. Cañadas, L. Guerra Rosa","doi":"10.5923/j.ijmc.20190901.01","DOIUrl":"https://doi.org/10.5923/j.ijmc.20190901.01","url":null,"abstract":"Nitriding experiments for powder specimens of Mo and Fe were carried out using a solar furnace SF40 at PSA (Plataforma Solar de Almeria) in Tabernas (Spain) in uncracked ammonia NH3 gas (NH3 gas with suppressed extent of dissociation by flowing) aiming at determining the range of linear velocity v of NH3 gas flow to yield higher nitride phases, δ-MoN for Mo and e-Fe2N for Fe. Standard solar exposure duration at a specified reaction temperature T was set to be 60 min over range of v between 1.14 mm·s-1 and 11.4 mm·s-1. By X-ray diffraction (XRD) analysis, presence of δ-MoN was detected besides γ-Mo2N and metallic Mo for Mo powder specimen heated to 900 oC in NH3 gas flow at v = 1.14 mm·s-1 but XRD peaks identifiable as δ-MoN became indiscernible when v was increased to 11.4 mm·s-1. On the other hand, for Fe powder specimen exposed to NH3 gas flow at v = 1.14 mm·s-1 at T = 500 oC, remnant metallic α-Fe was detectable by XRD at the down-stream side of the specimen holder but no metallic α-Fe was detected at the up-stream side of the specimen holder suggesting that chemical activity a(N) of N atom in uncracked NH3 gas tended to decrease along the NH3 gas flow path on going from the up-stream side to the down-stream side.","PeriodicalId":217478,"journal":{"name":"International Journal of Materials and Chemistry","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122525624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信