{"title":"Phylogenetics","authors":"Eliane Barbosa Evanovich dos Santos","doi":"10.5772/intechopen.79422","DOIUrl":"https://doi.org/10.5772/intechopen.79422","url":null,"abstract":"Describing the diversity of living beings has always instigated man. The classification proposed by Aristotle today seems naïve and unnatural, but it lasted from ancient Greece until the publication of the Linnaeus Systema Naturae in 1758. Although quite accurate, the taxonomic classification proposed by naturalist Carl Linnaeus did not consider the evolutionary relationships between living beings. This view, although prior to Charles Darwin, only gained deserved prominence after On the Origin of Species. Only in the twentieth century, a new area founded by Hennig, phylogenetic systematics was implemented, and with this, a series of useful methods in the construction of phylogenetic trees arose, as maximum parsimony, neighbor joining, UPGMA, maximum likelihood, and Bayesian inference. With the advancement of information technology, phylogenetic analyses have become more sophisticated and faster. The algorithms used in the analysis programs have become more complex and realistic, favoring the addition of substitution models. The application of these data and the greater facility in generating nucleotide and amino acid sequences allowed the comparison previously unimaginable, for example, between bacteria and eukaryotes. In this way, the history of the advances of phylogenetic knowledge is confused with the greater knowledge about the origin of life.","PeriodicalId":210783,"journal":{"name":"Recent Advances in Phylogenetics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121844561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Importance of Molecular and Phylogenetic Analyses for Identification of Basidiomycetes","authors":"S. Sarwar, Qudsia Firdous, A. Khalid","doi":"10.5772/INTECHOPEN.80671","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80671","url":null,"abstract":"Fungi are considered as diverse group of eukaryotic organisms and have very important role in ecosystem. Although their expected number is more than 2.2–3.8 million, only 120,000 taxa have been identified so far. Basidiomycetes are very large group of fungi including mushrooms, toad stools, puff balls, earth stars, polypores, and rust and smut fungi. Previously, these fungi were identified only by morphological characters that have been considered as variable due to environmental factors. Literature shows that many fungi are misidentified due to phenotypic changes. Molecular methods includ - ing phylogenetics prove to be successful aids along with traditional methods for correct identification of these fungi and these have revolutionized fungal reclassification. Many fungal taxa have been shifted to other groups of fungi after their phylogenetic analysis. So, many DNA markers can be used to solve such problems.","PeriodicalId":210783,"journal":{"name":"Recent Advances in Phylogenetics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116572822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phylogeny of Three Palmwine Yeasts Genera","authors":"O. Nwaiwu","doi":"10.5772/INTECHOPEN.79958","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79958","url":null,"abstract":"","PeriodicalId":210783,"journal":{"name":"Recent Advances in Phylogenetics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114383311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dowiya Benjamin Nzawele, Antoine Kanyenga Lubolo, Paul M. Kusolwa, Cornel L. Rweyemamu, Amon P. Maerere
{"title":"Genetic Diversity in Banana and Plantains Cultivars from Eastern DRC and Tanzania Using SSR and Morphological Markers, Their Phylogenetic Classification and Principal Components Analyses","authors":"Dowiya Benjamin Nzawele, Antoine Kanyenga Lubolo, Paul M. Kusolwa, Cornel L. Rweyemamu, Amon P. Maerere","doi":"10.5772/INTECHOPEN.79922","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79922","url":null,"abstract":"Bananas and plantains are edible and vegetatively propagated parthenocarpic species of the genus Musa. They are used as staple food, dessert and cash crop by more than hundred millions of people throughout the world. However, the crop is threatened by several pests and diseases in central and eastern Africa. One way of partly solving this problem is to have diploids which have desirable traits currently lacking in the AAA- Lujugira-Mutika subgroup. The study assessed through 21 microsatellite markers pairs the cladistic closeness of the diploid AA-Mshale accessions with AAA-Lujugira-Mutika with the purpose of inclusion in breeding programmes. Results showed that the eight studied accessions of AA-Mshale were different from each other. AA-Mshale malembo was fairly well established to be among the ancestor of Lujugira-Mutika, suggesting the determinism of its pollen viability and the level of resistance to pests for including in breeding programmes. The use of two pairs of microsatellites per chromosomes linkage group established the existence of alleles ’ deletion, recombination or non-annealing. The closeness among AA-Mshale and AAA-subgroups (Ibota, Gros Michel and Green Red) so far established through other techniques was confirmed. The results recommend the use of microsatellite markers, covering 11 linkage groups for cultivar identification and diver- sity study.","PeriodicalId":210783,"journal":{"name":"Recent Advances in Phylogenetics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132212487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}