{"title":"Castor Oil and its Derivatives with Market Growth, Commercial Perspective: Review","authors":"Omprakash H. Nautiyal","doi":"10.19080/omcij.2018.06.555692","DOIUrl":"https://doi.org/10.19080/omcij.2018.06.555692","url":null,"abstract":"Within the chemical industry oleo-chemicals from Castor beans carry a strong and potential pattern. With some of the old important processes and products are replaced by the new in its constant changes. Some products over the years in contrast that were decline have been revived in accordance with the introduction of new technology and applications. New market demands have mounted heavy pressure on castor chemistry and have responded with great vigor. BSS castor oil is used in wide variety of applications and is the starting material for many other derivatives of castor oil. In pharmaceuticals and cosmetics it is used as an ingredient in formulations. It combines well with styrene and diisocyanates for film forming as well varnish. It is substantially insoluble infusible polymer and is used as lubricant component of coatings for vitamin and mineral tablets. It is also important ingredient for petroleum oil and de emulsification. Ricinoleic acid is also known as castor oil acid and belongs to a family of the unsaturated fatty acid. The Principal Castor Reactions are as follows; pyrolysis, polyamide 11, hydrogenation, dehydration, caustic fusion, sebacic acid, undecylenic acid, heptaldehyde, sulfation/sulfonation, alkoxylation, oxidation/polymerization, esterification, dimerization, quaternaries, and engineering resin (interpenetrating networks).","PeriodicalId":21072,"journal":{"name":"Research and Reviews: Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82524830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal Organic Frameworks","authors":"A. Goyal","doi":"10.1002/9783527809097","DOIUrl":"https://doi.org/10.1002/9783527809097","url":null,"abstract":"In this review article, Metal organic frameworks were prepared by various routes and the prepared MOFs was characterized by various techniques like Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) techniques. MOFs were prepared by combination of various inorganic metals and organic linkers. MOFs have potential for the treatment of various gaseous pollutants. Further, MOFs were used for making composites with the help of doping something like ionic liquid, graphene oxide, CNTs etc. and these MOFs composite helpful in wide range of applications like gas storage, biomedical applications and catalysis and detection of heavy metal ions. MOFs have broad of advantageous properties (e.g., high surface area, high degree of porosity, specific adsorption affinities).","PeriodicalId":21072,"journal":{"name":"Research and Reviews: Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80675942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}