Dietary Fibers [Working Title]最新文献

筛选
英文 中文
Signaling Pathways Associated with Metabolites of Dietary Fibers Link to Host Health 膳食纤维代谢物与宿主健康相关的信号通路
Dietary Fibers [Working Title] Pub Date : 2021-09-24 DOI: 10.5772/intechopen.99586
K. Rani, J. Kumar, Sonia Sangwan, Nampher Masharing, M. Mitra, Harjit Singh
{"title":"Signaling Pathways Associated with Metabolites of Dietary Fibers Link to Host Health","authors":"K. Rani, J. Kumar, Sonia Sangwan, Nampher Masharing, M. Mitra, Harjit Singh","doi":"10.5772/intechopen.99586","DOIUrl":"https://doi.org/10.5772/intechopen.99586","url":null,"abstract":"Food is a basic requirement for human life and well-being. On the other hand, diet is necessary for growth, health and defense, as well as regulating and assisting the symbiotic gut microbial communities that inhabit in the digestive tract, referred to as the gut microbiota. Diet influences the composition of the gut microbiota. The quality and quantity of diet affects their metabolism which creates a link between diet. The microorganisms in response to the type and amount of dietary intake. Dietary fibers, which includes non-digestible carbohydrates (NDCs) are neither neither-digested nor absorbed and are subjected to bacterial fermentation in the gastrointestinal tract resulting in the formation of different metabolites called SCFAs. The SCFAs have been reported to effect metabolic activities at the molecularlevel. Acetate affects the metabolic pathway through the G-protein-coupled receptor (GPCR) and free fatty acid receptor2 (FFAR2/GPR43) while butyrate and propionate transactivate the peroxisome proliferator-activated receptors (PPARγ/NR1C3) and regulate the PPARγ target gene Angptl4 in colonic cells of the gut. The NDCs via gut microbiota dependent pathway regulate glucose homeostasis, gut integrity and hormone by GPCR, NF-kB, and AMPK-dependent processes. In this chapter, we will focus on dietary fibers, which interact directly with gut microbes and lead to the production of metabolites and discuss how dietary fiber impacts gut microbiota ecology, host physiology, and health and molecule mechanism of dietary fiber on signaling pathway that linked to the host health.","PeriodicalId":209195,"journal":{"name":"Dietary Fibers [Working Title]","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129113262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Psyllium: A Source of Dietary Fiber 车前草:膳食纤维的来源
Dietary Fibers [Working Title] Pub Date : 2021-09-19 DOI: 10.5772/intechopen.99372
R. Agrawal
{"title":"Psyllium: A Source of Dietary Fiber","authors":"R. Agrawal","doi":"10.5772/intechopen.99372","DOIUrl":"https://doi.org/10.5772/intechopen.99372","url":null,"abstract":"Dietary fiber is commonly known as roughage. Fibers are mostly present in vegetables, whole grain, nuts, legumes, and fruits. This is an indigestible part of the food obtained by plants. It includes polysaccharides such as cellulose, hemicellulose, pectic substances, mucilages, gums and lignin as well. Dietary fiber has beneficial physiological effect on health, so it is included in daily diet to decrease occurrence of several diseases. In this sequence, this chapter describes about the dietary fiber, psyllium commonly known as Isabgol which is prepared from the seed of the Plantago ovata Forsk (Psyllium ispaghula). Psyllium is hydrophilic mucilloid, has the capacity to absorb water and increases in volume while absorbing water. Psyllium consists of mixed viscous polysaccharide in which about 35% soluble and 65% insoluble polysaccharides (cellulose, hemicellulose, and lignin) are present. This can be used as gelling, food thickener, emulsifying and stabilizing agents in some food products. Psyllium is a natural biopolymer which has high quantity of hemicelluloses consist of xylan backbone connected with arabinose, galacturonic acid and rhamnose units. Since last many years it is being used as therapeutic agent in several diseases like chronic constipation, inflammation of mucous membrane of GIT tract, duodenal ulcers, piles or diarrohoea etc. It may be source of renewable and biodegradable polymer.","PeriodicalId":209195,"journal":{"name":"Dietary Fibers [Working Title]","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127418139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prebiotic Dietary Fibers for Weight Management 控制体重的益生元膳食纤维
Dietary Fibers [Working Title] Pub Date : 2021-08-09 DOI: 10.5772/intechopen.99421
C. Gezer, Gozde Okburan
{"title":"Prebiotic Dietary Fibers for Weight Management","authors":"C. Gezer, Gozde Okburan","doi":"10.5772/intechopen.99421","DOIUrl":"https://doi.org/10.5772/intechopen.99421","url":null,"abstract":"While all prebiotics are accepted as dietary fibers, not all dietary fibers are accepted as prebiotics. Fructo-oligosaccharides and galacto-oligosaccharides are significant prebiotic dietary fibers related with the regulation of weight management. They, selectively stimulate the growth of bifidobacteria and lactobacillus, thus help to modulate gut microbiota. Since bifiodobacteria population are responsible for energy scavenging they are playing a vital role in the weight management. In addition, prebiotics fermented to short chain fatty acids by gut microbiota, whose presence in the large intestine is responsible for many of the metabolic effects and prevent metabolic diseases such as obesity. Short chain fatty acids via different mechanisms also stimulate satiety hormones such as GLP-1 and PYY, and shift glucose and lipid metabolism. To conclude, prebiotic dietary fibers beneficially impact the gut microbiota thus can be effective on regulation of weight management. There is a need for further clinical trials to explain more comprehensively the effects of dietary prebiotics on weight management.","PeriodicalId":209195,"journal":{"name":"Dietary Fibers [Working Title]","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131703170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信