Ocean LifePub Date : 2018-06-01DOI: 10.13057/OCEANLIFE/O020102
M. D. Ghoora, S. S. Pilly, P. K. Chumun, S. Jawaheer, R. Bhagooli
{"title":"Short-term effects of heavy metal and temperature stresses on the photophysiology of Symbiodinium isolated from the coral Fungia repanda","authors":"M. D. Ghoora, S. S. Pilly, P. K. Chumun, S. Jawaheer, R. Bhagooli","doi":"10.13057/OCEANLIFE/O020102","DOIUrl":"https://doi.org/10.13057/OCEANLIFE/O020102","url":null,"abstract":"Ghoora MD, Pilly SS, Chumun PK, Jawaheer S, Bhagooli R. 2017. Short-term effects of heavy metal and temperature stresses on the photo-physiology of Symbiodinium isolated from the coral Fungia repanda. Ocean Life 1: 11-20. This study aimed to investigate the effects of the heavy metals, copper, zinc and lead, on the photo-physiology of the symbiotic dinoflagellate Symbiodinium isolated from the coral Fungia repanda. Freshly isolated Symbiodinium found to belong to clade C were exposed to different concentrations of the three heavy metals for 3-hour and 18-hour treatments at 28°C and 32°C. The Pulse Amplitude Modulated (PAM) fluorometry technique was used to determine the maximum quantum yield (Fv/Fm), relative maximum electron transport rate (rETRmax) and maximum non-photochemical quenching (NPQmax) of the photosystem II (PSII). An increase in non-photochemical quenching accompanied by a decrease in photosynthetic capacity was noted for copper at a concentration of 50 µg/L for both temperatures. The Fv/Fm was not significantly affected by the Zn treatments. However, at 28 °C, isolates treated with 100 µg/L Zn for 18 hours showed an increase in non-photochemical quenching accompanied by a decrease in photosynthetic capacity. Pb had the most profound effect on all of the isolates. The Fv/Fm significantly decreased and an increase in NPQmax was noted. The decrease of rETRmax and increase in NPQmax for the heavy metal bioassays under 32 °C were more significant than at 28 °C. This study suggests that Cu (≥50 µg/L), Zn (≥ 100 µg/L) and Pb decrease the photosynthetic capacity of the Symbiodinium isolates from F. repanda especially more so with increasing temperatures.","PeriodicalId":202741,"journal":{"name":"Ocean Life","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115696507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ocean LifePub Date : 2018-06-01DOI: 10.13057/OCEANLIFE/O020101
S. Mattan-Moorgawa, S. Rughooputh, R. Bhagooli
{"title":"Variable PSII functioning and bleaching conditions of tropical scleractinian corals pre-and post-bleaching event","authors":"S. Mattan-Moorgawa, S. Rughooputh, R. Bhagooli","doi":"10.13057/OCEANLIFE/O020101","DOIUrl":"https://doi.org/10.13057/OCEANLIFE/O020101","url":null,"abstract":"Mattan-Moorgawa S, Rughooputh SDDV, Bhagooli R. 2017. Variable PSII functioning and bleaching conditions of tropical scleractinian corals pre-and post-bleaching event. Ocean Life 1: 1-10. This study compared pre-bleaching and post-bleaching conditions of eight reef-building corals, Acropora cytherea, Acropora hyacynthus, Acropora muricata, Acropora sp., Pocillopora damicornis, Pocillopora eydouxi, Galaxea fascicularis and Fungia sp., in terms of visual coloration (non-bleached (NB), pale (P), partially bleached (PB) and bleached (B)) and chlorophyll fluorescence yield at photosystem II (PSII)). A total of twenty colonies from twelve stations along four transects were surveyed at Belle-Mare, Mauritius, from October 2008 to October 2009, and compared to the CoralWatch Coral Health Chart. PSII functioning, measured as Fv/Fm, were recorded in coral samples using a pulse-amplitudemodulated (PAM) fluorometer. Physico-chemical parameters (sea surface temperature, dissolved oxygen, salinity and pH) were recorded in situ. An increase in SST up to 31.4ºC in February 2009 triggered the bleaching event observed in May 2009 at the site. Acroporids showed the first sign of bleaching and paling as from January 2009 when mean SST was at 30ºC. Branching coral (P. eydouxi) and solitary coral (Fungia sp.) exhibited only 15% of their colonies showing paling by April 2009. A. cytherea, A. hyacynthus, and A. muricata showed varying bleaching conditions [Pale (P), Partially-bleached (PB) and Bleached (B)] at onset of the bleaching event whilst Acropora sp. showed only a paling of its colonies. Post-bleaching data indicated a differential recovery in visual coloration and PSII functioning among the corals. P. eydouxi and Fungia sp. showed no bleaching conditions throughout the study. P. damicornis and G. fascicularis indicated a quick coloration recovery from P to NB after the bleaching event, although their maximum quantum yield at PSII did not show significant changes in P and NB samples. A. muricata recovered faster than A. hyacynthus and A. cytherea in terms of PSII functioning. A differential recovery was observed post-bleaching event among the eight coral species, in terms of recovery of color and PSII functioning. The order of recovery was as follows: massive-like/ solitary corals > branching and semi-bulbous corals > tabular corals.","PeriodicalId":202741,"journal":{"name":"Ocean Life","volume":"59 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116383913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}