Vortex Dynamics - From Physical to Mathematical Aspects [Working Title]最新文献

筛选
英文 中文
Vortex Dynamics in the Wake of Planetary Ionospheres 行星电离层尾迹中的涡旋动力学
Vortex Dynamics - From Physical to Mathematical Aspects [Working Title] Pub Date : 2021-12-10 DOI: 10.5772/intechopen.101352
H. Pérez-de-Tejada, R. Lundin
{"title":"Vortex Dynamics in the Wake of Planetary Ionospheres","authors":"H. Pérez-de-Tejada, R. Lundin","doi":"10.5772/intechopen.101352","DOIUrl":"https://doi.org/10.5772/intechopen.101352","url":null,"abstract":"Measurements conducted with spacecraft around Venus and Mars have shown the presence of vortex structures in their plasma wake. Such features extend across distances of the order of a planetary radius and travel along their wake with a few minutes rotation period. At Venus, they are oriented in the counterclockwise sense when viewed from the wake. Vortex structures have also been reported from measurements conducted by the solar wind-Mars ionospheric boundary. Their position in the Venus wake varies during the solar cycle and becomes located closer to Venus with narrower width values during minimum solar cycle conditions. As a whole there is a tendency for the thickness of the vortex structures to become smaller with the downstream distance from Venus in a configuration similar to that of a corkscrew flow in fluid dynamics and that gradually becomes smaller with increasing distance downstream from an obstacle. It is argued that such process derives from the transport of momentum from vortex structures to motion directed along the Venus wake and that it is driven by the thermal expansion of the solar wind. The implications of that momentum transport are examined to stress an enhancement in the kinetic energy of particles that move along the wake after reducing the rotational kinetic energy of particles streaming in a vortex flow. As a result, the kinetic energy of plasma articles along the Venus wake becomes enhanced by the momentum of the vortex flow, which decreases its size in that direction. Particle fluxes with such properties should be measured with increasing distance downstream from Venus. Similar conditions should also be expected in vortex flows subject to pressure forces that drive them behind an obstacle.","PeriodicalId":199126,"journal":{"name":"Vortex Dynamics - From Physical to Mathematical Aspects [Working Title]","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122237284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Propagation of Vortex Beams in Random Mediums 涡旋光束在随机介质中的传播
Vortex Dynamics - From Physical to Mathematical Aspects [Working Title] Pub Date : 2021-11-17 DOI: 10.5772/intechopen.101061
Ş. Dalgaç, Kholoud Elmabruk
{"title":"The Propagation of Vortex Beams in Random Mediums","authors":"Ş. Dalgaç, Kholoud Elmabruk","doi":"10.5772/intechopen.101061","DOIUrl":"https://doi.org/10.5772/intechopen.101061","url":null,"abstract":"Vortex beams acquire increasing attention due to their unique properties. These beams have an annular spatial profile with a dark spot at the center, the so-called phase singularity. This singularity defines the helical phase structure which is related to the topological charge value. Topological charge value allows vortex beams to carry orbital angular momentum. The existence of orbital angular momentum offers a large capacity and high dimensional information processing which make vortex beams very attractive for free-space optical communications. Besides that, these beams are well capable of reducing turbulence-induced scintillation which leads to better system performance. This chapter introduces the research conducted up to date either theoretically or experimentally regarding vortex beam irradiance, scintillation, and other properties while propagating in turbulent mediums.","PeriodicalId":199126,"journal":{"name":"Vortex Dynamics - From Physical to Mathematical Aspects [Working Title]","volume":"261 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122932461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Relaxation Dynamics of Point Vortices 点涡的松弛动力学
Vortex Dynamics - From Physical to Mathematical Aspects [Working Title] Pub Date : 2021-11-09 DOI: 10.5772/intechopen.100585
Ken Sawada, Takashi Suzuki
{"title":"Relaxation Dynamics of Point Vortices","authors":"Ken Sawada, Takashi Suzuki","doi":"10.5772/intechopen.100585","DOIUrl":"https://doi.org/10.5772/intechopen.100585","url":null,"abstract":"We study a model describing relaxation dynamics of point vortices, from quasi-stationary state to the stationary state. It takes the form of a mean field equation of Brownian point vortices derived from Chavanis, and is formulated by our previous work as a limit equation of the patch model studied by Robert-Someria. This model is subject to the micro-canonical statistic laws; conservation of energy, that of mass, and increasing of the entropy. We study the existence and nonexistence of the global-in-time solution. It is known that this profile is controlled by a bound of the negative inverse temperature. Here we prove a rigorous result for radially symmetric case. Hence E/M2 large and small imply the global-in-time and blowup in finite time of the solution, respectively. Where E and M denote the total energy and the total mass, respectively.","PeriodicalId":199126,"journal":{"name":"Vortex Dynamics - From Physical to Mathematical Aspects [Working Title]","volume":"348 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134261526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信