{"title":"Group III-Nitrides and Their Hybrid Structures for Next-Generation Photodetectors","authors":"D. Singh, B. Roul, K. Nanda, S. .. Krupanidhi","doi":"10.5772/INTECHOPEN.95389","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95389","url":null,"abstract":"In the last few decades, there has been a phenomenal rise and evolution in the field of III–Nitride semiconductors for optoelectronic applications such as lasers, sensors and detectors. However, certain hurdles still remain in the path of designing high-performance photodetectors (PDs) based on III-Nitride semiconductors considering their device performance. Recently, a lot of progress has been achieved in devices based on the high quality epilayers grown by molecular beam epitaxy (MBE). Being an ultra-high vacuum environment based-technique, MBE has enabled the realization of high-quality and highly efficient PDs which have exhibited competitive figures of merit to that of the commercial PDs. Moreover, by combining the novel properties of 2D materials with MBE-grown III-Nitrides, devices with enhanced functionalities have been realized which would pave a way towards the next-generation photonics. In the current chapter, the basic concepts about photodetection have been presented in detail, followed by a discussion on the basic properties of the III-Nitride semiconductors, and the recent advancements in the field of MBE-grown III-Nitrides-based PDs, with an emphasis on their hybrid structures. Finally, an outlook has been provided highlighting the present shortcomings as well as the unresolved issues associated with the present-day devices in this emerging field of research.","PeriodicalId":189325,"journal":{"name":"Light-Emitting Diodes and Photodetectors - Advances and Future Directions [Working Title]","volume":"07 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116701046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conducting Polymer-Based Emissive Layer on Efficiency of OLEDs","authors":"D. Nayak, R. Choudhary","doi":"10.5772/intechopen.98652","DOIUrl":"https://doi.org/10.5772/intechopen.98652","url":null,"abstract":"Many changes have arisen in the world of display technologies as time has passed. In the vast area of display technology, Organic light-emitting diode is a recent and exciting discovery. Organic light-emitting diodes (OLEDs) have received a lot of curiosity among the researcher in recent years as the next generation of lighting and displays due to their numerous advantages, such as superior efficiency, mechanical flexibility and stability, chemical versatility, ease of fabrication, and so on. It works on the theory of electroluminescence, which is a mechanism in which electrical energy converts to light energy. Organic LEDs have a thickness of 100 to 500 nanometers or 200 times that of human hair. In OLEDs, organic material can be used in two or three layers. The emissive layer plays a key role in OLEDs. Polymers are used in the emissive layer to enhance the efficiency of OLEDs at the same time self-luminescence materials are used in OLEDs. In displays, this self-illuminating property removes the need for backlighting. Compared to LEDs and LCDs, OLED displays are smaller, lighter, and more portable.","PeriodicalId":189325,"journal":{"name":"Light-Emitting Diodes and Photodetectors - Advances and Future Directions [Working Title]","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127339280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Near-Infrared Schottky Silicon Photodetectors Based on Two Dimensional Materials","authors":"T. Crisci, L. Moretti, M. Gioffré, M. Casalino","doi":"10.5772/intechopen.99625","DOIUrl":"https://doi.org/10.5772/intechopen.99625","url":null,"abstract":"Since its discovery in 2004, graphene has attracted the interest of the scientific community due to its excellent properties of high carrier mobility, flexibility, strong light-matter interaction and broadband absorption. Despite of its weak light optical absorption and zero band gap, graphene has demonstrated impressive results as active material for optoelectronic devices. This success pushed towards the investigation of new two-dimensional (2D) materials to be employed in a next generation of optoelectronic devices with particular reference to the photodetectors. Indeed, most of 2D materials can be transferred on many substrates, including silicon, opening the path to the development of Schottky junctions to be used for the infrared detection. Although Schottky near-infrared silicon photodetectors based on metals are not a new concept in literature the employment of two-dimensional materials instead of metals is relatively new and it is leading to silicon-based photodetectors with unprecedented performance in the infrared regime. This chapter aims, first to elucidate the physical effect and the working principles of these devices, then to describe the main structures reported in literature, finally to discuss the most significant results obtained in recent years.","PeriodicalId":189325,"journal":{"name":"Light-Emitting Diodes and Photodetectors - Advances and Future Directions [Working Title]","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134454811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}