{"title":"Decomposition Mechanisms of BODIPY Dyes","authors":"Y. Marfin, S. Usoltsev, E. Rumyantsev","doi":"10.5772/INTECHOPEN.80498","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80498","url":null,"abstract":"","PeriodicalId":185895,"journal":{"name":"BODIPY Dyes - A Privilege Molecular Scaffold with Tunable Properties","volume":"468 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129589124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introductory Chapter: BODIPY Dye, an All-in-One Molecular Scaffold for (Bio)Photonics","authors":"R. Sola-Llano, J. Bañuelos","doi":"10.5772/INTECHOPEN.82682","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82682","url":null,"abstract":"Dye chemistry has witnessed a renewed interest in the last years. The reason of such impressive growth relies on the modern avenues in organic chemistry, which allow to develop new molecular structures, or decorate the backbone of an available chromophore with the desired substitution pattern, fulfilling the specific requirements of a given application field [1]. In this regard, those organic molecules able to emit fluorescence are receiving a great deal of attention owing to the recent technological advances in high-resolution spectroscopic techniques based on fluorescence. In fact, the Nobel Prize in 2014 was awarded to the development of super-resolution fluorescence microscopy (nanoscopy) [2–4]. Moreover, nowadays, bioimaging has become likely the most successful and widely used technique to monitor biochemical events at real time following the fluorescence emission of probes, sensors, and markers [5].","PeriodicalId":185895,"journal":{"name":"BODIPY Dyes - A Privilege Molecular Scaffold with Tunable Properties","volume":"713 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134347290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redox Chemistry of BODIPY Dyes","authors":"Brena L Thompson, Zachariah M. Heiden","doi":"10.5772/INTECHOPEN.79704","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79704","url":null,"abstract":"The implementation of BODIPY dyes in electron transfer reactions is an exciting new frontier that expands the toolbox of the dye molecule that has primarily been implemented in biological and chemical sensing applications. BODIPY dyes are capable of reversible reductions at the average reduction potential of −1.53 V vs. ferrocene/ferrocenium, varying about 700 mV from this average value depending on the substitution of the BODIPY core. BODIPY dyes are also capable of reversible oxidations, exhibiting an average oxidation potential of 610 mV with the ability to manipulate the oxidation potential up to 600 mV from the average potential. The respective azaBODIPY dyes are on average about 600 mV easier to reduce (more positive potentials) and are oxidized at almost identical oxidation potentials to the respective BODIPY dyes. The oxidation and reduction potentials of BODIPY dyes are heavily dependent on substitution of the BODIPY core, which allows for a high degree of tunability in the redox potentials. This characteristic makes BODIPY dye molecules good candidates for use as photoredox catalysts, redox flow batteries, redox-active ligands, light harvesting antenna, and many other applications in materials science, biology, and chemical synthesis.","PeriodicalId":185895,"journal":{"name":"BODIPY Dyes - A Privilege Molecular Scaffold with Tunable Properties","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116041212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BODIPY Core as Signaling Unit in Chemosensor Design","authors":"A. Costero, M. Parra, S. Gil, Pablo Gaviña","doi":"10.5772/INTECHOPEN.79591","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79591","url":null,"abstract":"BODIPY derivatives possess unique photophysical properties and for these reasons, they have been used in numerous fields. Among the different applications, they are used in designing chemosensors that has increased in the last years. Here, we report several strat - egies and examples for detecting analytes of different characteristics: cations, anions, and hazardous and pollutant neutral molecules using BODIPY core as signaling unit.","PeriodicalId":185895,"journal":{"name":"BODIPY Dyes - A Privilege Molecular Scaffold with Tunable Properties","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124098589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blue-Emitting BODIPY Dyes","authors":"Na Hee Kim, Dokyoung Kim","doi":"10.5772/INTECHOPEN.80349","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80349","url":null,"abstract":"BODIPY which consists of a dipyrromethene complex with disubstituted boron has emerged as a superior fluorophore in various research fields. BODIPY typically shows high quantum yield with environment-insensitive fluorescence emission, sharp excitation and emission peaks, high water solubility and biocompatibility, and photostability. So far, various kinds of BODIPY derivatives have been developed and applied in not only academia such as chemistry, biochemistry, biomedical engineering, and medicine but also industries. BODIPY shows dramatic photophysical property changes upon substitution of functional groups or pi bond elongation on the main core structure. Among them, the blue-emitting BODIPY dyes with their synthesis and photophysical analysis were recently reported. In this chapter, the key information of the blue-emitting BODIPY dyes and their recent cutting-edge applications are summarized.","PeriodicalId":185895,"journal":{"name":"BODIPY Dyes - A Privilege Molecular Scaffold with Tunable Properties","volume":"146 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133536828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}