S. I. Tadadjeu, B. Ngom, Shane Martin, Robert RykVan Zyl, M. Maaza
{"title":"Ion Beams for Space Applications","authors":"S. I. Tadadjeu, B. Ngom, Shane Martin, Robert RykVan Zyl, M. Maaza","doi":"10.5772/INTECHOPEN.76993","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76993","url":null,"abstract":"This chapter uses an active space mission as well as current and ongoing research work to showcase the role of ion beams in the advancement of space science and technology. It uses the mission objectives of the ZACUBE-2 space mission developed at the Cape Peninsula University of Technology in Cape Town, South Africa, to predict the space environment it will encounter when in orbit. These predictions are then used to show how ion beam parameters for single event effect testing are selected, and how trade-offs are made to achieve a cost effective use of beam time. An experiment is detailed, showcasing the role of ion beams in the investigation of the shielding capabilities of coatings obtained from the pulsed laser ablation of W2B5/B4C for solar panel applications in space. The results of this experiment show that indeed this is a potential shield capable of reducing solar panel degradation due to low energy protons. By using ZACUBE-2 and coatings made from W2B5/B4C, this chapter takes a practical and current approach to demonstrate the central role played by ion beams in advancing space technology. More importantly, it eases the conversation between the satellite and the ion beam communities.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115355658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion-Nanoscale Matter Interactions","authors":"E. Dawi","doi":"10.5772/INTECHOPEN.76862","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76862","url":null,"abstract":"Irradiation of spherical gold (Au) nanoparticles confined within a silica matrix with swift heavy ions induces their shaping into prolate nanorods along the beam direction. In this review, spherical colloidal Au nanoparticles with a diameter in the range of 15–30 nm (±3 nm) are irradiated at normal incidence with Ag ions with a kinetic energy in the range of 18–54 MeV to fluences between 1013 and 1015 ions/cm2 at 300 K. For example, under irradiation with 18 MeV Ag+4 ions to a fluence of 6.4 × 1014 ions/cm2, the originally spherical nanoparticles of 15 nm diameter are shaped into prolate nanorods with a length of 40 nm and a width of 8 nm. An aspect ratio of the major to the minor axis of the nanorods of about 5.0 ± 0.4 at constant volume is achieved. Saturation of the variation of the aspect ratio is reached at a fluence of 8.7 × 1014 ions/cm2. Irradiation of samples containing 15 nm Au particles with 25 and 54 MeV Ag ions has shown further lengthening of the Au nanorods, increasing with the increasing ion energy. Similar ion-shaping behavior is reported for 30 nm Au particles under irradiation with 18, 25, and 54 MeV Ag ion energies, respectively. By systematically monitoring the experimental data, we put in evidence the existence of a threshold fluence of Au nanoparticle elongation. The value of the threshold fluence is found to depend on both the ion energy and nanoparticle size.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133529203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion Beams for Nanoscale Optical Data Storage","authors":"T. Tsvetkova","doi":"10.5772/INTECHOPEN.77976","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77976","url":null,"abstract":"The ion beam techniques have been investigated as a novel approach for properties modification and optimization of wide-bandgap materials with view of their uses in submicron lithography and high-density data storage for archival purposes. Focused ion-implantation has been used to write nanoscale optical data into wide-bandgap amorphous materials (hydrogenated amorphous silicon carbide (a-SiC:H) and tetrahedral amorphous carbon (ta-C) films). Scanning near-field optical microscopy is proposed as a novel technique for characterizing the ion-implanted patterns fabricated in amorphous silicon carbide (a-SiC:H). Although a considerable thickness change (thinning tendency) has been observed in the ion-irradiated areas, the near-field measurements confirm increases of optical absorption in these areas. The results are discussed in terms of the competition between the effects of ion implantation and surface milling by the ion beam. The observed effects are important for amorphous silicon carbide and tetrahedral amorphous carbon thin films as extremely stable materials in adverse environments to be used for permanent data archiving. The observed values of the optical contrast modulation are sufficient to justify the efficiency of the method for optical data recording using focused ion nanobeams.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130895775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nitrogen Ion Microscopy","authors":"Marek E. Schmidt, M. Akabori, H. Mizuta","doi":"10.5772/INTECHOPEN.76383","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76383","url":null,"abstract":"The gas field ion source (GFIS) can be used to generate beams of helium, neon, hydrogen, and nitrogen ions, among others. Due to the low energy spread and the atomically small virtual source size, highly focused ion beams (FIB) can be obtained. We discuss the history of the GFIS and explain the field ionization and field evaporation process in general. Then, the unique properties of the nitrogen ionization, originating from the molecular nature, are explained. We show how the nitrogen ion microscopy (N2IM) can be used to image and pattern samples. The unique contrast observed in samples with graphene or carbon is reported. Finally, we conclude with an outlook of the technology and possible key applications such as spatially localized nitrogen-vacancy center implantation.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"474 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116470049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introductory Chapter: Ion Beam Applications","authors":"I. Ahmad, F. Ezema","doi":"10.5772/INTECHOPEN.78966","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.78966","url":null,"abstract":"beams are also being used to produce radioisotopes that are used for the mentioned uses. Further research is also going on to produce high-quality radioisotopes through the series of investigation into production of radioisotopes and its decay characteristics in medical applications such as cross-section measurement of ion beam with target atom to monitor nuclear reactions, compilation of nuclear reaction data for therapeutic radionuclides production, and Beta decay nuclear reaction cross-section measurement for positron emission tomography.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132391980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and Simulation of p-Type Ion Implantation in MCT","authors":"Changzhi Shi","doi":"10.5772/INTECHOPEN.77111","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77111","url":null,"abstract":"Ion implantation is one of the key technologies for the fabrication of HgCdTe (MCT) infra- red photodiodes. In order to achieve p-on-n type photodiode structure with better per -formance, the group V elements typically serve as p-type dopants, especially arsenic. In this chapter, ion profiles, defect microstructures, and surface amorphization of implanted group V dopants represented by arsenic into MCT epilayers were characterized by sec - ondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM), and X-ray diffraction (XRD), respectively. The influences of some significant technological parameters related to ion implantation, such as implant energy, implant dose, ion beam current, barrier layer structure, on the distributions of ions and induced damages are analyzed. In addition, the high-temperature annealing used to eliminate induced dam ages and activate the electrical activity of ions was subjected to the as-implanted samples, and the ion diffusion profiles and surface microstructures were acquired and analyzed. Finally, the computer simulations on the collision of incident ions and lattice atoms were carried out to study the distributions of ions and recoil atoms numerically. The simulation results are in good agreement with the experimental data.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123161340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion Beams for Materials Analysis: Conventional and Advanced Approaches","authors":"V. Egorov, E. Egorov","doi":"10.5772/INTECHOPEN.76297","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76297","url":null,"abstract":"Ion beam material diagnostic possibilities are discussed. Experimental data of H + and He + ion beams interaction with material for the energy range 0.8 – 1.6 MeVare presented. There are described the conventional ion beam analytical complex facility and some peculiarities featured for Sokol-3 IMT RAS one. Common characteristics of ion beam analytical methods are described. Specific attention is focused on the ion beam methods use for real objects investigations. It is shown that these methods are very effective for the light element diagnostics. New technology for the element surface analysis on base of the PIXE method modification by the planar X-ray waveguide-resonator application is elaborated. Attention is drowning to facts that all ion beam experimental methods are nondestructive and the Rutherford backscattering spectrometry is real quantitative analytical procedure.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128215370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Khuchua, M. Tigishvili, N. Dolidze, Z. Jibuti, RevazMelkadze, R. Diehl
{"title":"Ion Implantation as a Tool for Controlled Modification of Photoelectrical Properties of Silicon","authors":"N. Khuchua, M. Tigishvili, N. Dolidze, Z. Jibuti, RevazMelkadze, R. Diehl","doi":"10.5772/INTECHOPEN.76992","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76992","url":null,"abstract":"The results of our recent studies of controlled modifications of the photoelectrical properties of n-Si due to B + ion implantation are supplemented with new data, summarized and analyzed. The starting material was wafers of single-crystalline n-Si and a silicon-on-insulator structures. p-n-Si structures were fabricated by ion implantation of B + in doses ranging from 1 × 10 13 to 1 × 10 15 сm −2 and ion acceleration energies of 50 and 32 keV. Subsequent annealing was performed both by steady-state (900 and 1000°C, 20 min) and pulsed photon processing. In such structures, a pronounced photosensitivity is observed in the short-wave infrared range (1.5–2.2 μm), as well as in the ultraviolet region within 0.25–0.40 μm. A well-defined correlation between the structural, electrical and photoelectrical properties and the implantation and annealing regimes, as well as the content of C and O impurities is demonstrated. In the starting material, a damaged layer with a thickness of hundreds of nanometers was found to have a significant effect on the results obtained. The main results are discussed in terms of the formation/transforma-tion of deep-level extended defects in n-Si during B + implantation followed by annealing. Innovative application approaches of the technology are obvious.","PeriodicalId":185798,"journal":{"name":"Ion Beam Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130665887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}