{"title":"Theta functions and algebraic curves with automorphisms","authors":"T. Shaska, G. Wijesiri","doi":"10.3233/978-1-60750-019-3-193","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-193","url":null,"abstract":"Let $X$ be an irreducible, smooth, projective curve of genus $g geq 2$ defined over the complex field $C.$ Then there is a covering $pi: X longrightarrow P^1,$ where $P^1$ denotes the projective line. The problem of expressing branch points of the covering $pi$ in terms of the transcendentals (period matrix, thetanulls, e.g.) is classical. It goes back to Riemann, Jacobi, Picard and Rosenhein. Many mathematicians, including Picard and Thomae, have offered partial treatments for this problem. In this work, we address the problem for cyclic curves of genus 2, 3, and 4 and find relations among theta functions for curves with automorphisms. We consider curves of genus $g > 1$ admitting an automorphism $sigma$ such that $X^sigma$ has genus zero and $sigma$ generates a normal subgroup of the automorphism group $Aut(X)$ of $X$. \u0000To characterize the locus of cyclic curves by analytic conditions on its Abelian coordinates, in other words, theta functions, we use some classical formulas, recent results of Hurwitz spaces, and symbolic computations, especially for genera 2 and 3. For hyperelliptic curves, we use Thomae's formula to invert the period map and discover relations among the classical thetanulls of cyclic curves. For non hyperelliptic curves, we write the equations in terms of thetanulls. \u0000Fast genus 2 curve arithmetic in the Jacobian of the curve is used in cryptography and is based on inverting the moduli map for genus 2 curves and on some other relations on theta functions. We determine similar formulas and relations for genus 3 hyperelliptic curves and offer an algorithm for how this can be done for higher genus curves. It is still to be determined whether our formulas for $g=3$ can be used in cryptographic applications as in $g=2.$","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126159177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-dual codes and invariant theory","authors":"G. Nebe","doi":"10.3233/978-1-60750-019-3-23","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-23","url":null,"abstract":"A formal notion of a Typ T of a self-dual linear code over a nite left R- module V is introduced which allows to give explicit generators of a nite complex matrix group, the associated Clifford-Weil group C.T / • GLjVj.C/, such that the complete weight enumerators of self-dual isotropic codes of Type T span the ring of invariants of C.T /. This generalizes Gleason's 1970 theorem to a very wide class of rings and also includes multiple weight enumerators (see Section 2.7), as these are the complete weight enumerators cwem.C/ D cwe.Rm › C/ of Rm£m -linear self-dual codes Rm›C • .V m/N of Type T m with associated Clifford-Weil group Cm.T / D C.T m /. The nite Siegel 8-operator mapping cwem.C/ to cwemi1.C/ hence denes a ring epimorphism 8m V Inv.Cm.T // ! Inv.Cmi1.T // between invariant rings of complex matrix groups of different degrees. If R D V is a - nite eld, then the structure of Cm.T / allows to dene a commutative algebra of Cm.T / double cosets, called a Hecke algebra in analogy to the one in the theory of lattices and modular forms. This algebra consists of self-adjoint linear operators on Inv.Cm.T // commuting with 8m . The Hecke-eigenspaces yield explicit linear relations among the cwem of self-dual codes CV N.","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"34 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123775657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real and imaginary hyperelliptic curve cryptography - Aspects of curve cryptography","authors":"A. Stein","doi":"10.3233/978-1-60750-019-3-100","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-100","url":null,"abstract":"","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"213 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132417173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Cryptographical Properties of Extremal Algebraic Graphs","authors":"V. Ustimenko","doi":"10.3233/978-1-60750-019-3-256","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-256","url":null,"abstract":"","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125101460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enumerative Geometry and String Theory","authors":"A. Elezi","doi":"10.3233/978-1-60750-019-3-238","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-238","url":null,"abstract":"Inevitably, reading is one of the requirements to be undergone. To improve the performance and quality, someone needs to have something new every day. It will suggest you to have more inspirations, then. However, the needs of inspirations will make you searching for some sources. Even from the other people experience, internet, and many books. Books and internet are the recommended media to help you improving your quality and performance.","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123725302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combinatorial Designs and Code Synchronization","authors":"V. Tonchev","doi":"10.3233/978-1-60750-019-3-81","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-81","url":null,"abstract":"Combinatorial Designs and Code Synchronization – p. 1/2","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122184956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vector Bundles in Error-Correcting for Geometric Goppa Codes","authors":"E. Previato","doi":"10.3233/978-1-60750-019-3-42","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-42","url":null,"abstract":"","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130972585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Additive Codes over F4 with Automorphisms","authors":"W. C. Huffman","doi":"10.3233/978-1-60750-019-3-1","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-1","url":null,"abstract":"","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"229 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133848078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A variant of the Reidemeister-Schreier algorithm for the fundamental groups of Riemann surfaces","authors":"K. Magaard, S. Shpectorov","doi":"10.3233/978-1-60750-019-3-174","DOIUrl":"https://doi.org/10.3233/978-1-60750-019-3-174","url":null,"abstract":"","PeriodicalId":185285,"journal":{"name":"Algebraic Aspects of Digital Communications","volume":"37 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116733799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}