{"title":"Meta-Learning for Few-Shot Named Entity Recognition","authors":"Cyprien de Lichy, Hadrien Glaude, W. Campbell","doi":"10.18653/v1/2021.metanlp-1.6","DOIUrl":"https://doi.org/10.18653/v1/2021.metanlp-1.6","url":null,"abstract":"Meta-learning has recently been proposed to learn models and algorithms that can generalize from a handful of examples. However, applications to structured prediction and textual tasks pose challenges for meta-learning algorithms. In this paper, we apply two meta-learning algorithms, Prototypical Networks and Reptile, to few-shot Named Entity Recognition (NER), including a method for incorporating language model pre-training and Conditional Random Fields (CRF). We propose a task generation scheme for converting classical NER datasets into the few-shot setting, for both training and evaluation. Using three public datasets, we show these meta-learning algorithms outperform a reasonable fine-tuned BERT baseline. In addition, we propose a novel combination of Prototypical Networks and Reptile.","PeriodicalId":171906,"journal":{"name":"Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123230249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Pair Text Style Transfer for Unbalanced Data via Task-Adaptive Meta-Learning","authors":"Xing Han, J. Lundin","doi":"10.18653/v1/2021.metanlp-1.4","DOIUrl":"https://doi.org/10.18653/v1/2021.metanlp-1.4","url":null,"abstract":"Text-style transfer aims to convert text given in one domain into another by paraphrasing the sentence or substituting the keywords without altering the content. By necessity, state-of-the-art methods have evolved to accommodate nonparallel training data, as it is frequently the case there are multiple data sources of unequal size, with a mixture of labeled and unlabeled sentences. Moreover, the inherent style defined within each source might be distinct. A generic bidirectional (e.g., formal Leftrightarrow informal) style transfer regardless of different groups may not generalize well to different applications. In this work, we developed a task adaptive meta-learning framework that can simultaneously perform a multi-pair text-style transfer using a single model. The proposed method can adaptively balance the difference of meta-knowledge across multiple tasks. Results show that our method leads to better quantitative performance as well as coherent style variations. Common challenges of unbalanced data and mismatched domains are handled well by this method.","PeriodicalId":171906,"journal":{"name":"Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125486163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-supervised Meta-learning for Cross-domain Few-shot Intent Classification","authors":"Judith Yue Li, Jiong Zhang","doi":"10.18653/v1/2021.metanlp-1.8","DOIUrl":"https://doi.org/10.18653/v1/2021.metanlp-1.8","url":null,"abstract":"Meta learning aims to optimize the model’s capability to generalize to new tasks and domains. Lacking a data-efficient way to create meta training tasks has prevented the application of meta-learning to the real-world few shot learning scenarios. Recent studies have proposed unsupervised approaches to create meta-training tasks from unlabeled data for free, e.g., the SMLMT method (Bansal et al., 2020a) constructs unsupervised multi-class classification tasks from the unlabeled text by randomly masking words in the sentence and let the meta learner choose which word to fill in the blank. This study proposes a semi-supervised meta-learning approach that incorporates both the representation power of large pre-trained language models and the generalization capability of prototypical networks enhanced by SMLMT. The semi-supervised meta training approach avoids overfitting prototypical networks on a small number of labeled training examples and quickly learns cross-domain task-specific representation only from a few supporting examples. By incorporating SMLMT with prototypical networks, the meta learner generalizes better to unseen domains and gains higher accuracy on out-of-scope examples without the heavy lifting of pre-training. We observe significant improvement in few-shot generalization after training only a few epochs on the intent classification tasks evaluated in a multi-domain setting.","PeriodicalId":171906,"journal":{"name":"Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing","volume":"2 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120816607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Meta-Reinforcement Learning for Mastering Multiple Skills and Generalizing across Environments in Text-based Games","authors":"Zhenjie Zhao, Mingfei Sun, Xiaojuan Ma","doi":"10.18653/v1/2021.metanlp-1.1","DOIUrl":"https://doi.org/10.18653/v1/2021.metanlp-1.1","url":null,"abstract":"Text-based games can be used to develop task-oriented text agents for accomplishing tasks with high-level language instructions, which has potential applications in domains such as human-robot interaction. Given a text instruction, reinforcement learning is commonly used to train agents to complete the intended task owing to its convenience of learning policies automatically. However, because of the large space of combinatorial text actions, learning a policy network that generates an action word by word with reinforcement learning is challenging. Recent research works show that imitation learning provides an effective way of training a generation-based policy network. However, trained agents with imitation learning are hard to master a wide spectrum of task types or skills, and it is also difficult for them to generalize to new environments. In this paper, we propose a meta reinforcement learning based method to train text agents through learning-to-explore. In particular, the text agent first explores the environment to gather task-specific information and then adapts the execution policy for solving the task with this information. On the publicly available testbed ALFWorld, we conducted a comparison study with imitation learning and show the superiority of our method.","PeriodicalId":171906,"journal":{"name":"Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116096856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}