{"title":"Generative Adversarial Networks for Visible to Infrared Video Conversion","authors":"M. S. Uddin, Jiang Li","doi":"10.5772/intechopen.93866","DOIUrl":"https://doi.org/10.5772/intechopen.93866","url":null,"abstract":"Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent GAN (Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix GAN model requires visible-infrared image pairs for training while the Cycle GAN relaxes this constraint and requires only unpaired images from both domains. We applied the two models to an open-source database where visible and infrared videos provided by the signal multimedia and telecommunications laboratory at the Federal University of Rio de Janeiro. We evaluated conversion results by performance metrics including Inception Score (IS), Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Our experiments suggest that cycle-consistent GAN is more effective than pix2pix GAN for generating IR images from optical images.","PeriodicalId":171152,"journal":{"name":"Recent Advances in Image Restoration with Applications to Real World Problems","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116545433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Style-Based Unsupervised Learning for Real-World Face Image Super-Resolution","authors":"A. C. Sidiya, Xin Li","doi":"10.5772/intechopen.92320","DOIUrl":"https://doi.org/10.5772/intechopen.92320","url":null,"abstract":"Face image synthesis has advanced rapidly in recent years. However, similar success has not been witnessed in related areas such as face single image super-resolution (SISR). The performance of SISR on real-world low-quality face images remains unsatisfactory. In this paper, we demonstrate how to advance the state-of-the-art in face SISR by leveraging style-based generator in unsupervised settings. For real-world low-resolution (LR) face images, we propose a novel unsupervised learning approach by combining style-based generator with relativistic discriminator. With a carefully designed training strategy, we demonstrate our converges faster and better suppresses artifacts than Bulat’s approach. When trained on an ensemble of high-quality datasets (CelebA, AFLW, LS3D-W, and VGGFace2), we report significant visual quality improvements over other competing methods especially for real-world low-quality face images such as those in Widerface. Additionally, we have verified that both our unsupervised approaches are capable of improving the matching performance of widely used face recognition systems such as OpenFace.","PeriodicalId":171152,"journal":{"name":"Recent Advances in Image Restoration with Applications to Real World Problems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131163777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Restaino, G. Vivone, P. Addesso, Daniele Picone, J. Chanussot
{"title":"Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data","authors":"R. Restaino, G. Vivone, P. Addesso, Daniele Picone, J. Chanussot","doi":"10.5772/intechopen.92795","DOIUrl":"https://doi.org/10.5772/intechopen.92795","url":null,"abstract":"Multi-platform data introduce new possibilities in the context of data fusion, as they allow to exploit several remotely sensed images acquired by different combinations of sensors. This scenario is particularly interesting for the sharpening of hyperspectral (HS) images, due to the limited availability of high-resolution (HR) sensors mounted onboard of the same platform as that of the HS device. However, the differences in the acquisition geometry and the nonsimultaneity of this kind of observations introduce further difficulties whose effects have to be taken into account in the design of data fusion algorithms. In this study, we present the most widespread HS image sharpening techniques and assess their performances by testing them over real acquisitions taken by the Earth Observing-1 (EO-1) and the WorldView-3 (WV3) satellites. We also highlight the difficulties arising from the use of multi-platform data and, at the same time, the benefits achievable through this approach.","PeriodicalId":171152,"journal":{"name":"Recent Advances in Image Restoration with Applications to Real World Problems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124804536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}