Proceedings of The 9th International Multidisciplinary Conference on Optofluidics 2019最新文献

筛选
英文 中文
Non-Hermitian, Topological, and Lorentz Non-reciprocal Photonic Systems 非厄米、拓扑和洛伦兹非互易光子系统
K. Fung
{"title":"Non-Hermitian, Topological, and Lorentz Non-reciprocal Photonic Systems","authors":"K. Fung","doi":"10.3390/IMCO2019-06171","DOIUrl":"https://doi.org/10.3390/IMCO2019-06171","url":null,"abstract":"Non-Hermitian, Topological, and Lorentz non-reciprocal photonic resonators have attracted intense attention due to their complexities which are strongly dependent on their spatial and temporal structures. Strongly dispersive materials such as plasmonic and gyromagnetic materials lead to additional difficulties in defining topological bands. In this talk, I will introduce recent progress in my group and discuss the bands and edge modes in these low-symmetry photonic systems. Arrays of plasmonic nanoparticles and gyromagnetic resonators will be used as examples to illustrate the topological and Lorentz non-reciprocal effects.","PeriodicalId":159732,"journal":{"name":"Proceedings of The 9th International Multidisciplinary Conference on Optofluidics 2019","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114209050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diatomic metasurface for multi-functional light field manipulation 用于多功能光场操作的双原子超表面
Xiangping Li, Zi-lan Deng
{"title":"Diatomic metasurface for multi-functional light field manipulation","authors":"Xiangping Li, Zi-lan Deng","doi":"10.3390/IMCO2019-06170","DOIUrl":"https://doi.org/10.3390/IMCO2019-06170","url":null,"abstract":"Metasurface composed of arrays of subwavelength scale optical antennas emerges as a new paradigm for light field manipulation and unpins various flat optical diffractive devices. Based on their phase modulation mechanisms, the reported metasurfaces can be classified into three categories: resonance phase, propagation phase and geometric phase. In this talk, we propose a new metasurface design allowing to fully control the phase, amplitude, polarization and frequency of visible light simultaneously. This is achieved through a generalized geometric phase mechanism which combines the detour phase and the Pancharatnam–Berry phase. Utilizing a diatomic design strategy, the in-plane displacements and orientations of two identical meta-atom in each unit meta-molecules are fully exploited enabling light field manipulation at multi-dimensions. Leveraging this appealing feature, we experimentally demonstrated the broadband vectorial holographic images with spatially-varying polarization states, dual-way polarization switching functionalities, and full-color complex-amplitude vectorial holograms. Our work may suggest a new route to achromatic diffractive elements, polarization optics and ultra-secure anti-counterfeiting.","PeriodicalId":159732,"journal":{"name":"Proceedings of The 9th International Multidisciplinary Conference on Optofluidics 2019","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123199698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信