{"title":"Small-Angle Scattering Analysis of Fractals Generated by Additive Cellular Automata","authors":"A. Slyamov, E. Anitas","doi":"10.5772/INTECHOPEN.74498","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74498","url":null,"abstract":"Structural analysis of fractals generated using one-dimensional additive cellular automata (ACA) is presented in this chapter. ACA is a dynamical system that evolves in discrete steps and generates two-dimensional self-similar structures. We investigate the structure of M-state ACA Rule 90 and Rule 150 using small-angle scattering (SAS; X-rays, neutrons, light) technique and multi-fractal analysis. We show how the scattering data from ACA can provide information about the overall size of the system, the number of total units, the number of rows, the size of the basic fractal units, the scaling factor, and the fractal dimension. In this case, when a particular row number reproduces a complete structure of the fractals, we can also obtain the fractal iteration number. We show that subsets of different states of M-state ACA can manifest both monoand multi-fractal properties. We provide some useful relations between structural parameters of ACA that can be obtained experimentally from SAS.","PeriodicalId":156909,"journal":{"name":"Small Angle Scattering and Diffraction","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124784616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baobao Chang, K. Schneider, I. Kuehnert, G. Heinrich
{"title":"Cavitation Behavior of Semi-Crystalline Polymers during Uniaxial Stretching Studied by Synchrotron Small-Angle X-Ray Scattering","authors":"Baobao Chang, K. Schneider, I. Kuehnert, G. Heinrich","doi":"10.5772/INTECHOPEN.74224","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74224","url":null,"abstract":"Cavitation appears in many semi-crystalline polymers when they are subjected to uniaxial stretching above their glass transition temperatures. Generally, the formation of voids is influenced by the morphology of semi-crystalline polymers, including their lamellae thickness, lamellae orientation, as well as the arrangement of the amorphous phase. Upon stretching, the size of the voids changes as a function of the local strain. Synchrotron small-angle X-ray scattering (SAXS) can be used as a powerful method to in-situ monitor the evolution of voids with high time and spatial resolution. In this chapter, recent reports about the cavitation behavior of semi-crystalline polymers studied by SAXS are reviewed. Afterwards, the theoretical background related to the SAXS technique is introduced. Lastly, some exemplary results about the cavitation behavior of microinjection-molded isotactic-polypropylene, studied by synchrotron SAXS measurements, are presented.","PeriodicalId":156909,"journal":{"name":"Small Angle Scattering and Diffraction","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133970350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiscale X-Ray Scattering for Probing Chemo-Morphological Coupling in Pore-to-Field and Process Scale Energy and Environmental Applications","authors":"G. Gadikota","doi":"10.5772/INTECHOPEN.76266","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76266","url":null,"abstract":"One of the greatest challenges of our generation is the sustainable storage of environ- mentally harmful by-products of energy production processes. High-level nuclear wastes and CO 2 produced from the energy sectors are examples of these by-products. To ensure the environmentally benign storage of these by-products in a solid form, it is essential to understand the chemical and morphological features of the materials in which these by- products are immobilized. With recent advancements in X-ray scattering, it is now possi ble to map the structure and the microstructure of architected and natural materials across four decades in spatial scale. Multiscale X-ray scattering that encompasses ultrasmall-, small-, and wide-angle X-ray scattering (USAXS/SAXS/WAXS) allows us to probe material features in the spatial ranges of ~5 μm–10 nm, ~100–1 nm, and ~1 nm–0.2 Å, respectively. This connection is illustrated using two specific examples. The first example involves determination of the changes in the porosity and the structure of beidellite, a swelling clay used in the repository design for nuclear waste disposal, on heating to temperatures above 1000°C. The second example illustrates the changes in the nanoscale porosity of heat-treated serpentine after reacting with CO 2 to form magnesium carbonate.","PeriodicalId":156909,"journal":{"name":"Small Angle Scattering and Diffraction","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132677496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of Small-Angle Scattering Patterns","authors":"C. Alves, C. L. Oliveira","doi":"10.5772/INTECHOPEN.74345","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74345","url":null,"abstract":"Small-angle scattering (SAS) experiments applied to nano-scaled systems allow the investigation of the constituents’ overall shape, size, internal structure and arrangement. A standard scattering experiment requires a relatively simple setup and is often applied to investigate a system of particles. In these cases, the measured scattering intensity represents an average over a large number of particles illuminated by the incoming beam. The calculation and modeling of the scattering intensity can be performed by the use of analytical/semi-analytical expressions or by the use of numerical methods. In this book chapter, an overview of current available simulation/modeling methods for SAS will be shown either for systems composed of oriented or for randomly oriented particles. Examples demonstrating the use of the finite element method are presented as well as a newly developed method for calculating scattering intensity for oriented particles.","PeriodicalId":156909,"journal":{"name":"Small Angle Scattering and Diffraction","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127724798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"X-Ray Diffraction Analysis of Structural Changes Induced by Overrolling","authors":"O. Beer","doi":"10.5772/INTECHOPEN.74251","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74251","url":null,"abstract":"A new method of X-ray diffraction analysis to evaluate structural changes in rolling ele - ment bearing components is demonstrated. The basics of residual stress measurement by X-ray diffraction based on the sin 2 ψ method are explained. Microstructural analysis is performed on bearing components after rig testing and after use in field. The results shown in this chapter are mostly derived from rolling element bearing applications in aero engines. First it is shown how an estimation of a rolling contact fatigue life can be derived from microstructural analysis. Second it will be shown that surface near induced residual stresses can improve rolling contact fatigue life. Finally it will be demonstrated that basic results from rig testing can be transferred to use in field. microstructural analysis. A comparison of microstructural evaluation results on components taken from engine bearings after use in the field with results from parts after rig testing shows, that basic causes and effects are similar in both cases. These results therefore provide a confirmation that results from rig testing can be used for bearing design also in demanding applications.","PeriodicalId":156909,"journal":{"name":"Small Angle Scattering and Diffraction","volume":"7 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120845070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}