Sofia Ananieva, M. Kowal, Thomas Thüm, Ina Schaefer
{"title":"Implicit constraints in partial feature models","authors":"Sofia Ananieva, M. Kowal, Thomas Thüm, Ina Schaefer","doi":"10.1145/3001867.3001870","DOIUrl":"https://doi.org/10.1145/3001867.3001870","url":null,"abstract":"Developing and maintaining a feature model is a tedious process and gets increasingly difficult with regard to large product lines consisting of thousands of features and constraints. In addition, these large-scale feature models typically involve several stakeholders from different domains during development and maintenance. We aim at supporting such stakeholders by deriving and explaining implicit constraints for partial feature models. A partial feature model can either be a submodel of a feature model representing the full product line or a specific feature model in a set of interrelated models. For every implicit constraint, we generate an explanation exposing which other model parts and constraints interfere with the partial model of interest. Thus, stakeholders are only confronted with a small part of the feature model reducing the complexity while preserving the necessary information about dependencies. Our approach is implemented in the open-source framework FeatureIDE.","PeriodicalId":153261,"journal":{"name":"Proceedings of the 7th International Workshop on Feature-Oriented Software Development","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129019213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher-order delta modeling for software product line evolution","authors":"Sascha Lity, M. Kowal, Ina Schaefer","doi":"10.1145/3001867.3001872","DOIUrl":"https://doi.org/10.1145/3001867.3001872","url":null,"abstract":"In software product lines (SPL), i.e., a family of similar software systems sharing common and variable artifacts, modeling evolution and reasoning about it is challenging, as not only a single system, but rather a set of system variants as well as their interdependencies change. An integrated modeling formalism for variability and evolution is required to allow the capturing of evolution operations that are applied to SPL artifacts, and to facilitate the impact analysis of evolution on the artifact level. Delta modeling is a flexible transformational variability modeling approach, where the variability and commonality between variants are explicitly documented and analyzable by means of transformations modeled as deltas. In this paper, we lift the notion of delta modeling to capture both, variability and evolution, by deltas. We evolve a delta model specifying a set of variants by applying higher-order deltas. A higher-order delta encapsulates evolution operations, i.e., additions, removals, or modifications of deltas, and transforms a delta model in its new version. In this way, we capture the complete evolution history of delta-oriented SPLs by higher-order delta models. By analyzing each higher-order delta application, we are further able to reason about the impact and, thus, the changes to the specified set of variants. We prototypically implement our formalism and show its applicability using a system from the automation engineering domain.","PeriodicalId":153261,"journal":{"name":"Proceedings of the 7th International Workshop on Feature-Oriented Software Development","volume":"282 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132564794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variability mining of state charts","authors":"David Wille, Sandro Schulze, Ina Schaefer","doi":"10.1145/3001867.3001875","DOIUrl":"https://doi.org/10.1145/3001867.3001875","url":null,"abstract":"Companies commonly use state charts to reduce the complexity of software development. To create variants with slightly different functionality from existing products, it is common practice to copy the corresponding state charts and modify them to changed requirements. Even though these so-called clone-and-own approaches save money in the short-term, they introduce severe risks for software evolution and product quality in the long term as the relation between the software variants is lost so that all products have to be maintained separately. In previous work, we introduced variability mining algorithms to identify the relations between related MATLAB/Simulink model variants regarding their common and varying parts. In this paper, we adapt these algorithms for state charts by applying guidelines from previous work to make them available for developers to better understand the relations between a set of state chart variants. Using this knowledge, maintenance of related variants can be improved and migration from clone-and-own based single variant development to more elaborate reuse strategies is possible to increase maintainability and the overall product quality. We demonstrate the feasibility of variability mining for state charts by means of a case study with models of realistic size.","PeriodicalId":153261,"journal":{"name":"Proceedings of the 7th International Workshop on Feature-Oriented Software Development","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133797283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}