{"title":"Universal Quantum Computing: Third Gen Prototyping Utilizing Relativistic ‘Trivector’ R-Qubit Modeling Surmounting Uncertainty","authors":"R. Amoroso, L. Kauffman, S. Giandinoto","doi":"10.1142/9789814504782_0034","DOIUrl":"https://doi.org/10.1142/9789814504782_0034","url":null,"abstract":"We postulate bulk universal quantum computing (QC) cannot be achieved without surmounting the quantum uncertainty principle, an inherent barrier by empirical definition in the regime described by the Copenhagen interpretation of quantum theory - the last remaining hurdle to bulk QC. To surmount uncertainty with probability 1, we redefine the basis for the qubit utilizing a unique form of M-Theoretic Calabi-Yau mirror symmetry cast in an LSXD Dirac covariant polarized vacuum with an inherent ‘Feynman synchronization backbone’. This also incorporates a relativistic qubit (r-qubit) providing additional degrees of freedom beyond the traditional Block 2-sphere qubit bringing the r-qubit into correspondence with our version of Relativistic Topological Quantum Field Theory (RTQFT). We present a 3 rd generation prototype design for simplifying bulk QC implementation.","PeriodicalId":143072,"journal":{"name":"The Physics of Reality","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116809135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}