{"title":"Resilience and Situational Awareness in Critical Infrastructure Protection: An Indicator-Based Approach","authors":"A. Jovanović, Mihailo Jelić, S. Chakravarty","doi":"10.5772/INTECHOPEN.97810","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.97810","url":null,"abstract":"The paper proposes a concept enabling quantitative assessment of resilience in critical entities developed in the European projects SmartResilience and InfraStress. The concept aims at combining simple communication-related advantages of simplified assessments results (such as “resilience very high” or “resilience very low”) with the advantages of the in-depth assessments (e.g. analysis of multiple sensor data). The paper describes the main elements of the innovative, indicator-based concept, starting with the “resilience cube” at the top, and continuing with the multi-level, hierarchical, indicator-based assessment methodology. The concept allows analyzing and assessing different aspects of practical resilience management. One can assess the resilience level of an entity at a given point in time, monitor their resilience level over time and benchmark it. One can also model and analyze the functionality of a system during a particular (threat) scenario, as well as stress-test it. The same methodology allows to optimize investment in improving resilience (e.g. in further training, in equipment, etc.), in a transparent and intuitive way. A resilience indicator database (over 4,000 indicators available) and a suite of tools (primarily developed within SmartResilience and InfraStress projects) and a repository of over 20 application cases and 300 scenarios, support application of the methodology. The concept has been discussed and agreed with over 50 different organizational stakeholders and is being embedded into the new ISO 31050 standard currently under development. Its “life-after-the-project” will be ensured by the dedicated “resilience rating initiative (ERRA)”. Although the concept and the tool in the form of the “ResilienceTool” were developed primarily for the resilience assessment of critical infrastructure (the “smart” ones in particular), they can be used for resilience assessment of other systems and through the extension of the, already initiated, implementation of AI techniques (machine learning) to make the ResilienceTool even more versatile and easier to use in the future.","PeriodicalId":132814,"journal":{"name":"Issues on Risk Analysis for Critical Infrastructure Protection","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126450483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Rosato, A. D. Pietro, P. Kotzanikolaou, G. Stergiopoulos, Giulio Smedile
{"title":"Integrating Resilience in Time-based Dependency Analysis: A Large-Scale Case Study for Urban Critical Infrastructures","authors":"V. Rosato, A. D. Pietro, P. Kotzanikolaou, G. Stergiopoulos, Giulio Smedile","doi":"10.5772/INTECHOPEN.97809","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.97809","url":null,"abstract":"As critical systems shall withstand different types of perturbations affecting their functionalities and their service level, resilience is a very important requirement. Especially in an urban critical infrastructures where the occurrence of natural events may influence the state of other dependent infrastructures from various different sectors, the overall resilience of such infrastructures against large scale failures is even more important. When a perturbation occurs in a system, the quality (level) of the service provided by the affected system will be reduced and a recovery phase will be triggered to restore the system to its normal operation level. According to the implemented recovery controls, the restoration phase may follow a different growth model. This paper extends a previous time-based dependency risk analysis methodology by integrating and assessing the effect of recovery controls. The main goal is to dynamically assess the evolution of recovery over time, in order to identify how the expected recovery plans will eventually affect the overall risk of the critical paths. The proposed recovery-aware time-based dependency analysis methodology was integrated into the CIPCast Decision Support System that enables risk forecast due to natural events to identify vulnerable and disrupted assets (e.g., electric substations, telecommunication components) and measure the expected risk paths. Thus, CIPCast can be valuable to Critical Infrastructure Operators and other Emergency Managers involved in a crisis assessment to evaluate the effect of natural and anthropic threats affecting critical assets and plan proper countermeasures to reduce the overall risk of degradation of services. The proposed methodology is evaluated in a real scenario, which utilizes several infrastructures and Points of Interest of the city of Rome.","PeriodicalId":132814,"journal":{"name":"Issues on Risk Analysis for Critical Infrastructure Protection","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123835507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}