{"title":"Seasonal Dynamics on Spider Population in Pathiramanal Island, Kerala, India: A Case Study","authors":"J. J. Malamel","doi":"10.5772/INTECHOPEN.93411","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.93411","url":null,"abstract":"Impact of temperature, rainfall, and humidity varied across different seasons, and the spiders responded differently in each season. Spider community reaches its peak in growing season (October to January). The growing season is recorded as the period with average temperature, rainfall, and relative humidity and which is found to be more suitable for spider population to increase, because highest proportion of spiders is trapped during this season. Ecological factors diminished the spider fauna from February to May (dry season) with high temperature and then gradually decreased through June to September (rainy season) because of heavy rainfall. Correlation analysis of variables with species richness and number of individuals is tested to check the statistical significance between them. Season-wise dendrogram is plotted to show the similarity between the seasons. For the estimation of spider diversity in three different seasons, indices such as Fisher alpha diversity index, Shannon diversity index and Simpson’s diversity index are evaluated.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"150 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127028880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Floral Color Signals and Their Heliconiid Butterfly Receivers","authors":"Gyanpriya Maharaj, G. Bourne, A. Ansari","doi":"10.5772/intechopen.98666","DOIUrl":"https://doi.org/10.5772/intechopen.98666","url":null,"abstract":"Signals vary in type and function. However, regardless of the signal, effective transmission and receiver detection are needed to exist for communication. This chapter focuses on a review of visual color signals used by plants to attract pollinators. Signal detection work has intensely focused on epigamic signals; therefore, this review adds to the body of knowledge on nonsexual signal communication. In this review, we investigate visual signals as it relates to pollinators. We focus specifically on visual color signals used by Angiosperms flowers, both static and dynamic, and look at their Heliconiid pollinators as these butterflies provide a perfect organism for studies on floral signal use and pollinators’ behavior. We noted that many of these butterflies have three specifically distinct rhodopsins used to identify food and oviposition sites and some have more due to selective pressures of conspecific and mate identification as such they have served as the focal organisms of numerous genetic and ecological studies as they use color signaling in all aspects of their lives. This review further shows that although their color preferences related to feeding, ovipositing, and mate selection have been demonstrated in countless studies, there are gaps in invertebrate literature, as research on the relationships among signal use, evolution, dynamic signals, effects of signals changes on decision making and thus behavior have not been carried out to a large extent.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114563726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Sivakamavalli, Kiyun Park, I. Kwak, Vaseeharan Baskaralingam
{"title":"Bacterial Disease Control Methods in Shrimp (Penaeus, 1798) Farming Sector in Asian Countries","authors":"J. Sivakamavalli, Kiyun Park, I. Kwak, Vaseeharan Baskaralingam","doi":"10.5772/INTECHOPEN.93680","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.93680","url":null,"abstract":"Aquaculture industry produces the enormous amount of sea foods (fish, shrimp, planktons, etc.) with enriched quantity of proteins, essential amino acids, essential fatty acids, and micronutrients and also possesses the medicinal values. This production industry is very important to meet out the need of the global population. Recently, different culture practices for aquatic culturing organisms were developed in practices, where the risk of infection and diseases outbreak also increased which leads to the production loss to the aquatic sector. Several conventional methods are used to prevent the diseases probiotics, antibiotics, plants, immmunostimulants, proteins, immune proteins enhancement, nanoparticles, etc. At the same time, these treatment techniques also have merits and demerits to execute into the practical platform. For instance, chemical or antibiotics treatment into the culture system leads to the some adverse effects in culturing organisms, environment, and also consumer. In this chapter, various diseases caused by the bacterial strains and its control strategies in the shrimp farming industry to enhance the aquaculture are discussed.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128669259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ants as Indicators of Terrestrial Ecosystem Rehabilitation Processes","authors":"Hendrik Sithole, Nolubabalo Tantsi","doi":"10.5772/INTECHOPEN.96722","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96722","url":null,"abstract":"Habitat transformation is one of the main drivers of the ecosystem degradation on earth that is ameliorated by restoring some of the degraded ecosystems by regaining their natural ecological functions with all their biotic and abiotic components. The biotic and abiotic components of the ecosystem under restoration can be used to assess the response of the ecosystem to the restoration. Ideal variable to use as the indicator should be able respond positively to the diminishing elements that we causing the degradation and interact positively to some of the biotic and abiotic components expected to prevail when the ecosystem is fully restored. One of such variable is ants. We here provide the information about the eligibility of using ants as indicators of terrestrial ecosystems undergoing restoration and sampling and basic analytical methods to apply when implanting ants at assessing ecosystem undergoing restoration.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123914432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pollinators: Their Evolution, Ecology, Management, and Conservation","authors":"V. Wojcik","doi":"10.5772/INTECHOPEN.97153","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.97153","url":null,"abstract":"Insect pollinators are a rich and diverse group of species that have coevolved with plants to create biodiverse and productive landscapes that support ecosystem services. Bees, beetles, flies, butterflies, moths, and even ants participating in moving pollen within and between flowers, assisting the reproduction of more than 80% of all flowering plants. The value of insect pollinators to ecosystems and economies is both large and immeasurable. One of three bites of food eaten is pollinated, and countless raw materials and natural products are the result of the visitation of flowers by insects. Yet, these keystone species face survival challenges driven by habitat loss, pests, disease, pesticides, and climate change. Conservation, restoration, and management seek to build back resilience into these systems, without which our world would be unrecognizable.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116490851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical Arthropod Dynamics across Organic Matter Fractions in Relation to Microclimate and Plant Phenology","authors":"M. F. Barberena-Arias, E. Cuevas","doi":"10.5772/INTECHOPEN.94747","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.94747","url":null,"abstract":"Plant diversity is a key factor influencing belowground dynamics including microclimate and decomposer arthropod communities. This study addresses the effect of individual plant species on belowground arthropods by focusing on seasonal variations in precipitation, temperature and arthropods along the vertical organic matter profile. In the Guanica Dry Forest, Puerto Rico, microclimate was described and 5 plant species and 10 trees/species were selected. Under each tree, for one year, temperature was measured and samples collected along the organic matter fractions. Collected arthropods were standardized to ind/m2, identified to Order/Family and assigned to morphotypes. The annual temperature pattern was similar for all species and OM fractions. Arthropod abundance was similar among plant species and higher in humus than in litter fractions. Richness and species composition were different among plant species and OM fractions. All plant species and OM fractions showed low arthropod abundance and richness, and similar arthropod species composition in the dry season, while in the wet season abundance and richness were higher and species composition varied across plant species and OM fractions. These data suggest that arthropods form specific assemblages under plant species and stages of decomposition that, during the dry season, represent a subgroup adapted to extreme environmental conditions.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127616363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomonitoring Ecosystem: Modelling Relationship with Arthropods","authors":"J. Medhi, Jintu Dutta, M. Kalita","doi":"10.5772/intechopen.94313","DOIUrl":"https://doi.org/10.5772/intechopen.94313","url":null,"abstract":"Arthropods community structure and composition provides multiscale information about an environment health. Their reproduction and growth model are effective to assess the impact on ecosystem in response to stress such as anthropogenic activities (climate change) or natural (drought). Terrestrial and aquatic insects are potential bio-indicators. Terrestrial insects are an excellent model to assess the quality of terrestrial ecosystem. These insect species are assayed to detect metallic pollution and forest abundance. Soil and litter arthropods are used for examining soil quality. Honey bee mortality rates and the residues such as heavy metals, fungicides and herbicides presence in honey are good indicator of environmental pollution. The specificity of food and habitat selection by wasp population make it suitable for assessing habitat quality. Similarly butterflies habitat itself signifies a healthy ecosystem because of their sensitivity to even slightest change. Different arthropods act as keystone species and these keystone interactions also reveal many facets of an ecosystem quality. Similarly fly population such as Drosophila subobscura and their shift in the genetic composition indicate the global climate warming. The arthropods are explored as screening platform to understand the ecosystem resilience to disturbances. These underscores arthropods potential for evaluation of environmental impact and global climate change.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115951883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lecanicilliumspp. for the Management of Aphids, Whiteflies, Thrips, Scales and Mealy Bugs: Review","authors":"S. Reddy","doi":"10.5772/INTECHOPEN.94020","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.94020","url":null,"abstract":"Lecanicillium spp. are potential microbial bio-control agent mainly used for the management of sucking insect pests such as aphids, whiteflies, scales, mealy bugs etc. and gaining much importance at present for management of pests. Due to indiscriminate use of chemical pesticides which results in development of resistance, resurgence, outbreak of pests and residue problem, the farmers/growers are forced to use bio-pesticides for sustainable agriculture. Lecanicillium spp. is promising biocontrol agent against sucking insect pests and can be used as one of the components in integrated pest management (IPM). However, optimum temperature and relative humidity are the major environmental factors, for the performance of Lecanicillium spp. under protected/field conditions. The present review is mainly focused on nomenclature of Lecanicillium spp., mode of infection, natural occurrence, influence of temperature and humidity on the growth, factors influencing the efficacy, virulence/pathogenicity to target pests, substrates used for mass production, safety to non-target organisms, compatibility with agrochemicals and commercially available products. This review is mainly useful for the researchers/students to plan their future work on Lecanicillium spp.","PeriodicalId":129750,"journal":{"name":"Arthropods [Working Title]","volume":"105 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115037525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}