{"title":"Strategies for Site-Specific Radiolabeling of Peptides and Proteins","authors":"I. Dijkgraaf, S. Agten, M. Bauwens, T. Hackeng","doi":"10.5772/intechopen.99422","DOIUrl":"https://doi.org/10.5772/intechopen.99422","url":null,"abstract":"Although anatomical imaging modalities (X-ray, computed tomography (CT), magnetic resonance imaging (MRI)) still have a higher spatial resolution (0.1–1 mm) than molecular imaging modalities (single-photon emission computed tomography (SPECT), positron emission tomography (PET), optical imaging (OI)), the advantage of molecular imaging is that it can detect molecular and cellular changes at the onset of a disease before it leads to morphological tissue changes, which can be detected by anatomical imaging. During the last decades, noninvasive diagnostic imaging has encountered a rapid growth due to the development of dedicated imaging equipment for preclinical animal studies. In addition, the introduction of multimodality imaging (PET/CT, SPECT/CT, PET/MRI) which combines high-resolution conventional anatomical imaging with high sensitivity of tracer-based molecular imaging techniques has led to successful accomplishments in this exciting field. In this book chapter, we will focus on chemical synthesis techniques for site-specific incorporation of radionuclide chelators. Subsequently, radiolabeling based on complexation of a radionuclide with a chelator will be discussed, with focus on: diethylenetriaminepentaacetic acid (DTPA), 1,4,7,10-tetraazacyclododecane-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-triacetic acid (NOTA), hexa-histidine (His-tag), and 6-hydrazinonicotinic acid (HYNIC) that allow the production of peptides labeled with 18F, 68Ga, 99mTc, and 111In – the currently most widely used isotopes.","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122129361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quality in Non-Licensed Radiopharmaceutical Products: Are We Achieving the Goal?","authors":"E. Sánchez","doi":"10.5772/intechopen.99388","DOIUrl":"https://doi.org/10.5772/intechopen.99388","url":null,"abstract":"Radiopharmaceutical compounds, considered a special group of medicines, can be prepared outside the marketing authorisation track. Small-scale preparations at non-commercial sites thereby represent an important segment, however a lack of harmonisation in the regulation leads to extreme differences in the application and availability of radiopharmaceuticals across Europe. A number of guidelines and guidance documents have been issued by European Association of Nuclear Medicine (EAMN), Pharmaceutical inspection convention (PICs), European Directorate for the Quality of Medicines & HealthCare (EDQM) to achieve a good radiopharmacy practice for small-scale preparation. Nevertheless, in the case of non-licensed radiopharmaceuticals their consideration as magistral formulas, in some countries, makes it possible to waive regulatory inspections aimed to ensure those good practices enforcement. Moreover, special attention should be put on the quality assurance process for non-licensed starting materials, given that the final radiopharmaceuticals quality chiefly depends on it. This paper (chapter) will provide an insight into the quality standards applicable to starting materials, such as supplier qualification control, starting material re-test period, etc. in order to raise for discussion about how best to achieve a proven quality, efficacy, and safety for our radiopharmaceuticals (licensed or non-licensed).","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132713827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Soliman, A. Alenezi, A. Alrushoud, Salman Altimyat, M. Bakkari, Hanaa Alshikh
{"title":"Recent Advances in Biodistribution, Preclinical and Clinical Applications of Radiolabelled Iodine","authors":"K. Soliman, A. Alenezi, A. Alrushoud, Salman Altimyat, M. Bakkari, Hanaa Alshikh","doi":"10.5772/intechopen.99113","DOIUrl":"https://doi.org/10.5772/intechopen.99113","url":null,"abstract":"Adequate understanding of radiopharmaceutical distribution in the body of the patient has both spatial and temporal characteristics and they are the key factor to consider when planning successful radio pharmaceutical therapy, because they are an integral part of the radiation dosimetry calculations of any proposed personalized treatment. In this chapter we will focus on radioiodine therapy for thyroid cancer patients since it is a widely known practice in clinical oncology. Factors affecting the radioiodine organs’ distribution will be examined in sufficient details using the available published research in the scientific literature. The literature will be reviewed extensively and summarized in this chapter. Another aim is to provide the medical practitioners with a quick reference guide to this clinically important area of expertise; often mastered by medical physicists with background in radiation physics, mathematics and medical imaging analysis. This chapter will cover recent advances in the area of radioiodine biodistribution modeling with applications in preclinical and clinical studies.","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124201866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiopharmaceuticals in Modern Cancer Therapy","authors":"A. Elliyanti","doi":"10.5772/intechopen.99334","DOIUrl":"https://doi.org/10.5772/intechopen.99334","url":null,"abstract":"Nuclear medicine plays a role in oncology. It uses tracers (radiopharmaceuticals) to study physiological processes and treat diseases. The radiopharmaceuticals can be formed as radionuclides alone or radionuclides labeled with other molecules as a drug, a protein, or a peptide. The radiopharmaceutical is introduced into the body and accumulates in the target tissue of interest for therapy or imaging purposes. It offers to study cancer biology in vivo to optimize cancer therapy. Another advantage of radiopharmaceutical therapy is a tumor-targeting agent that deposits lethal radiation at tumor sites. This review outlines radiopharmaceuticals agents in current cancer therapy.","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131070715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Focal Increased Radiopharmaceutical Uptake Differentiation Using Quantitative Indices","authors":"V. SivaSubramaniyan, K. Venkataramaniah","doi":"10.5772/intechopen.99065","DOIUrl":"https://doi.org/10.5772/intechopen.99065","url":null,"abstract":"Focal increased radiopharmaceutical uptake in a lesion results in focal Hot Spots in the scans. This can occur in benign infective or inflammatory disorders and cancerous diseases as well. Comparison between malignant and benign lesions is important. The Hot spots can be classified into benign and malignant lesions by Spatial Scintimetry or Temporal Scintimetry. Spatial Scintimetry compares the uptake in the region of interest with the adjacent tissue or the unaffected contralateral site. The quantitative indices are lesion/non lesion ratio, lesion/background activity and lesion to Bone ratio etc. The Temporal Scintimetry relies on the changes in the counts or uptake in the Hotspot lesion with reference to the dual point time of acquisition. The Hotspot in the bone scan can be classified using the quantitative index of retention ratio by Dr. V. Siva and Israel. In PET studies the focal hot spots can be differentiated into benign and malignant lesion using the dual phase PETCT evaluation using the Rong’s Retention ratio and Dr. V. Siva’s modified RRI values.","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132978915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiopharmaceuticals: On-Going Research for Better Diagnosis, Therapy, Environmental, and Pharmaceutical Applications","authors":"F. Badria","doi":"10.5772/intechopen.99204","DOIUrl":"https://doi.org/10.5772/intechopen.99204","url":null,"abstract":"Radiopharmaceutical material is a pharmaceutical product or drug that may exert spontaneous degradation of unstable nuclei with nuclear particles or photons emission. Radiopharmaceuticals may be used in research, diagnosis, therapy, and environmental purposes. Moreover, radiopharmaceuticals act as radioactive tracers among patients via gamma-ray emissions. Therefore, the uses of radiopharmaceuticals as diagnostic agents may be given to patients to examine any biochemical, molecular biology, physiological, or anatomical abnormalities. Therapeutic radiopharmaceutical may be administered internally for therapeutic purposes via selective effect on certain abnormal cells or organs. The best known example for therapeutic radiopharmaceuticala is iodide131 for thyroid ablation in among patients with hyperthyroid. A third class of radiopharmaceutical is drug labeling which mainly used in research by using small amount of radioactive substances not for diagnostic purposes, but to investigate the metabolism, bio-distribution, pharmakodynamic, and pharmakokinetic of certain drugs in a nonradioactive form. This chapter focuses mainly on basic fundamentals of radiopharmaceutical chemistry, preparation, environmental, pharmaceutical, diagnostic, therapeutic, and research applications.","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130474340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Start Here When Performing Radiochemical Reactions","authors":"C. D. Souza, J. Kim, Jin Tae Hong","doi":"10.5772/INTECHOPEN.98766","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.98766","url":null,"abstract":"Radiation products are present in several fields of knowledge. From the energy field, with nuclear reactors and nuclear batteries, to the medical field, with nuclear medicine and radiation therapy (brachytherapy). Although chemistry works in the same way for radioactive and non-radioactive chemicals, an extra layer of problems is present in the radiochemical counter-part. Reactions can be unpredictable due to several factors. For example, iodine-125 in deposited in a silver wire to create the core of a medical radioactive seed. This core is the sealed forming a radioactive seed that are placed inside the cancer. Several aspects can be discussed in regards to radiation chemistry. For example: are there any competing ions? Each way my reaction is going? Each reaction is more likely to occur? Those are important questions, because, in the case of iodine, a volatile product can be formed causing contamination of laboratory, equipment, personal, and environment. This chapter attempts to create a guideline on how to safely proceed when a new radioactive chemical reaction. It discusses the steps by giving practical examples. The focus is in protecting the operator and the environment. The result can be achieved safely and be reliable contribution to science and society.","PeriodicalId":120705,"journal":{"name":"Radiopharmaceuticals [Working Title]","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121897564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}