{"title":"Graphene Oxide Embedded In Polymer Film As Saturable Absorber For Q-switched Erbium-doped Fiber Laser","authors":"M. Yasin, N. A. Aziz, S. Harun","doi":"10.35895/jpsi.v1i1.109","DOIUrl":"https://doi.org/10.35895/jpsi.v1i1.109","url":null,"abstract":"Abstract – We demonstrate a Q-switched Erbium-doped fiber laser (EDFL) using a newly developed Graphene Oxide (GO) based saturable absorber (SA). The SA was fabricated by embedding a GO material, which was obtained through chemical oxidation of graphite into polyvinyl alcohol (PVA) film. A small piece of the film was sandwiched between two fiber ferrules via a fiber adapter and incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.5 nm with a pump power threshold of 16.88 mW while a pulse repetition rate was tunable from 32.45 to 81.7 kHz, and the smallest pulse-width of 5.67 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 61.76 dB indicating the high stability of the laser. These results show that the GO has a great potential to be used for pulsed laser applications.Key words: graphene oxide, passive saturable absorber, Q-switching, EDFL, GO","PeriodicalId":119489,"journal":{"name":"Journal of the Physical Society of Indonesia","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134550928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. G. Suastika, H. Suyanto, Gunarjo, Sadiana, Darmaji
{"title":"Characterization of Amethysts from Sukamara, Central Kalimantan, Using Laser-Induced Breakdown Spectroscopy (LIBS)","authors":"K. G. Suastika, H. Suyanto, Gunarjo, Sadiana, Darmaji","doi":"10.35895/JPSI.V1I1.8","DOIUrl":"https://doi.org/10.35895/JPSI.V1I1.8","url":null,"abstract":"Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones","PeriodicalId":119489,"journal":{"name":"Journal of the Physical Society of Indonesia","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124274096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}