{"title":"Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion","authors":"L. Angenent","doi":"10.15496/PUBLIKATION-29195","DOIUrl":"https://doi.org/10.15496/PUBLIKATION-29195","url":null,"abstract":"Renewable electrical energy production, such as wind power or photovoltaics, faces temporal fluctuations and spatial separation of source and sink creating the need for suitable storage and conversion technologies. Furthermore, a bio-based economy needs technologies allowing the on-demand and on-site conversion of biomass to platform chemicals and chemical energy carriers. This study combines microbial and electrochemical conversions, allowing production of chemicals from biomass and electricity. Carboxylic acids (CAs) are produced by anaerobic conversion of a renewable feedstock with reactor microbiomes. CAs are subsequently electrochemically upgraded to yield energy-dense alkanes. We present a proof-of-concept based on experimental data for each step in two independent case studies at laboratory scale. During continuous CA fermentation from corn beer, mainly n-caproic and n-caprylic acid were produced yielding in total 0.638 g COD g−1 COD [CA/corn beer]. A batch system fed with corn silage yielded mainly n-butyric acid (0.207 g COD g−1 COD [CA/corn silage]), and some n-caproic acid (0.030 g COD g−1 COD [CA/corn silage]). The CAs were removed from the fermentation broth using a pertraction system. Subsequently, the CAs were electrochemically converted via Kolbe reaction and other reaction pathways. Depending on the carbon chain length of the CAs, liquid alkanes (from medium-chain CAs) or gaseous alkanes and alcohols (from short-chain CAs) were gained. Coulombic efficiencies of up to 80% were achieved despite the alkaline (pH 9) electrolysis conditions that are dictated by the pertraction system. Remarkably, CAs with a carbon chain length of six or more C-atoms were successfully converted to liquid alkanes at a high yield (in total: 0.480 g COD g−1 COD [hydrocarbon/corn beer]). This was achieved at an energy input of only 0.100 kW h per mol of converted CA (considering the electrochemical half cell reaction). Noteworthily, the electrochemical CA conversion is much faster than the CA fermentation, allowing intermittent electrolysis during periods of excess electrical power. We demonstrate that the finally gained product is suitable as a drop-in fuel without any further downstream processing. The future general potential as well as requirements for the concept are discussed.","PeriodicalId":11589,"journal":{"name":"Energy and Environmental Science","volume":"59 1","pages":"2231-2244"},"PeriodicalIF":0.0,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79920722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organic Solar Cells","authors":"Markus Hösel, Dechan Angmo, F. Krebs","doi":"10.1533/9780857098764.3.473","DOIUrl":"https://doi.org/10.1533/9780857098764.3.473","url":null,"abstract":"Organic-based photoconverters are subject to a considerable interest due to their promising functionalities and their potential use as alternatives to the more expensive inorganic analogues. We introduce the basic operational mechanisms, limitations and some ideas towards improving the efficiency of organic solar cells by focusing on probing the morphological/structural, dynamical, and electronic aspects of a model organic material consisting of charge-transfer discotic liquid-crystal system hexakis(n-hexyloxy)triphenylene/2,4,7 trinitro-9-fluorenone (HAT6/TNF). For the electronic ground-state investigations, neutron-scattering techniques play a key role in gaining deeper insight into structure and dynamics. These measurements are complemented by Raman and nuclear magnetic resonance probes, as well as resonant Raman and UV-vis spectroscopies that are used to explore the low-lying excited states, at the vibronic level. Synergistically, numerical simulations, either classical via empirical force fields, or first-principles via density functional theory, are used for the analysis, interpretation and predictions.","PeriodicalId":11589,"journal":{"name":"Energy and Environmental Science","volume":"167 1","pages":"109-135"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76000057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Borole, G. Reguera, B. Ringeisen, Zhi-wu Wang, Yujie Feng, Byung Hong Kim
{"title":"Erratum: Electroactive biofilms: Current status and future research needs (Energy & Environmental Science (2011) 4 (4813-4834) DOI: 10.1039/C1EE02511B)","authors":"A. Borole, G. Reguera, B. Ringeisen, Zhi-wu Wang, Yujie Feng, Byung Hong Kim","doi":"10.1039/C2EE90051C","DOIUrl":"https://doi.org/10.1039/C2EE90051C","url":null,"abstract":"Erratum : Strong and binder free structured zeolite sorbents with very high CO2-over-N-2 selectivities and high capacities to adsorb CO2 rapidly (vol 5, pg 7664, 2012)","PeriodicalId":11589,"journal":{"name":"Energy and Environmental Science","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77878513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted article: Towards Polymer-based Organic Thermoelectric Generators","authors":"Docent Xavier Crispin","doi":"10.1039/C2EE23401G","DOIUrl":"https://doi.org/10.1039/C2EE23401G","url":null,"abstract":"This Energy @ Environmental Science Accepted Manuscript was published in error and has been retracted by the publisher, the Royal Society of Chemistry. The publisher regrets that an administrative error led to a duplicate version of the manuscript being published. The correct manuscript can be accessed at http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22777k. The publishers apologise for any inconvenience caused by this error. Retraction published December 2013.","PeriodicalId":11589,"journal":{"name":"Energy and Environmental Science","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78458403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}