{"title":"Shape Memory Alloy (SMA)-Based Exoskeletons for Upper Limb Rehabilitation","authors":"D. Copaci, Janeth Arias, Luis Moreno, D. Blanco","doi":"10.5772/intechopen.101751","DOIUrl":"https://doi.org/10.5772/intechopen.101751","url":null,"abstract":"This contribution presents the advances in the use of flexible Shape Memory Alloy (SMA)-based actuators for the development of upper limb rehabilitation exoskeletons that have been carried out by our research group. The actuator features developed by our research group maintain the SMA wire characteristics (low-weight, low-cost, noiseless operation, compact, and simplicity) and additionally presents the flexibility and its increase the work frequency. These characteristics make that its integration in rehabilitation exoskeletons provides the user more comfort, easy to use, and freedom of movement. The chapter describes some different rigid and soft rehabilitation exoskeletons for different joints such as the elbow, wrist, and hand in which this type of actuator has been successfully integrated. This gives the possibilities to expand the research line with the actuated soft exosuits systems, in a future development perspective.","PeriodicalId":107795,"journal":{"name":"Artificial Muscles [Working Title]","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116874799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Systematic Study on TRIZ to Prepare the Innovation of 3DPVS","authors":"Haobo Yuan","doi":"10.5772/intechopen.101576","DOIUrl":"https://doi.org/10.5772/intechopen.101576","url":null,"abstract":"Regarding the innovation of biomimetic cell culture scaffold, 3DPVS, namely 3D printed vibratory scaffold, has been proposed as a present-to-future novel product. It currently stands at the stage of conceptual development. Design studies on 3DPVS Concept Generation show high value, and one essential part inside this could dwell at establishing design methodological knowledge that has innovation merits. TRIZ with its tools has proven value on creation and design innovativeness while they have not yet been utilized for scaffold design at mature level. In this paper, we attempt to study and explore the design aspects of TRIZ and its most relevant tools on the context of 3DPVS, as well as preliminarily indicating a TRIZ-based methodology, which could tailor the design aspects of 3DPVS. It also, to some extent, fills a gap in scaffold engineering and TRIZ literature and provides a comprehensive overview of a timely topic.","PeriodicalId":107795,"journal":{"name":"Artificial Muscles [Working Title]","volume":"23 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129816690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}