{"title":"Fuzzy Logic Control with PSO Tuning","authors":"Jeydson Lopes da Silva","doi":"10.5772/intechopen.96297","DOIUrl":"https://doi.org/10.5772/intechopen.96297","url":null,"abstract":"Several applications of artificial intelligence in the area of control of dynamic systems have proven to be an efficient tool for process improvement. In this context, control systems based on fuzzy logic - Fuzzy Logic Control (FLC) are part of a series of advances in the areas of control systems. Fuzzy control is based on natural language and therefore has the ability to make approximations closer to the real nature of the problems. The use of metaheuristic algorithms such as the particle swarm optimization (PSO) allows it to provide adequate adjustments to the fuzzy controller in an optimized manner. This technique allows to adjust the FLC in a simple way according to the performance desired by the designer, without the need for a long time of conventional tests.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115467053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuzzy Logic Expert System for Health Condition Assessment of Power Transformers","authors":"T. Manoj, C. Ranga","doi":"10.5772/INTECHOPEN.98663","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.98663","url":null,"abstract":"In the present chapter, a new fuzzy logic (FL) model is proposed to evaluate the overall health index (OHI) of power transformers. The most significant attributes such as dissolved gases, acidity, 2-furfuraldehyde, water content, breakdown voltage and dissipation factor that influence the health condition of transformers solid and liquid insulations are considered. These attributes are further divided into three different sets. Based on these sets, three different sub fuzzy models i.e. F1, F2 and F3 are designed in order to reduce the possible combinations of fuzzy rules. It results in reducing the complexity issues of the proposed OHI model. In addition, consideration of all significant testing parameters makes the model more reliable and accurate. Further, the proposed fuzzy model helps in initiating appropriate and early action on faulty conditions of the transformers. Conventional fuzzy logic models generally utilize large number of inputs and more number of rules in a single fuzzy model. It makes the models complex and inaccurate. Such shortcomings of existing conventional models are successfully overcame by the present proposed model. Furthermore, the results obtained from the proposed model are compared with the results obtained from expert model proposed by Abu-Elanien et al. This comparison ensures the reliability of the proposed method. Also, it is envisioned that the proposed model can be easily implemented by both the experienced and the inexperienced utility managers.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129500106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the Organizational Hierarchy Using the IFSAW and TOPSIS Techniques","authors":"Mahuya Deb","doi":"10.5772/INTECHOPEN.95979","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95979","url":null,"abstract":"Performance evaluations in organizations are viewed as ideal instruments for evaluating and rewarding the employee’s performance. While much emphasis is laid onto the administering of the evaluation techniques, not much thought has been laid out on assessing the contributions of each hierarchical level. Moreover the manifold decision making criteria can also impact the measurement of pertinent contributions because of their ambivalent characteristics. In such a scenario, intuitionistic fuzzy multi-criteria decision making can help strategists and policy makers to arrive at more or less accurate decisions. This paper restricts itself to six decision making criteria and adopts the intuitionistic fuzzy simple additive weighting (IFSAW) method and TOPSIS method to evaluate and rank the employee cadres. The results obtained were compared and both the methods revealed that the middle management displayed impeccable performance standards over their other counterparts.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"295 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132485238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compensatory of Adaptive Neural Fuzzy Inference System","authors":"R. Mellah, H. Khati, H. Talem, S. Guermah","doi":"10.5772/INTECHOPEN.96050","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96050","url":null,"abstract":"The traditional approach to fuzzy design is based on knowledge acquired by expert operators formulated into rules. However, operators may not be able to translate their knowledge and experience into a fuzzy logic controller. In addition, most adaptive fuzzy controllers present difficulties in determining appropriate fuzzy rules and appropriate membership functions. This chapter presents adaptive neural-fuzzy controller equipped with compensatory fuzzy control in order to adjust membership functions, and as well to optimize the adaptive reasoning by using a compensatory learning algorithm. An analysis of stability and transparency based on a passivity framework is carried out. The resulting controllers are implemented on a two degree of freedom robotic system. The simulation results obtained show a fairly high accuracy in terms of position and velocity tracking, what highlights the effectiveness of the proposed controllers.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134023357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Location Selection for Smog Towers Using Zadeh’s Z-Numbers Integrated with WASPAS","authors":"Janani Bharatraj","doi":"10.5772/INTECHOPEN.95906","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95906","url":null,"abstract":"Fuzzy sets have been extensively researched and results have been developed based on the extensions of fuzzy sets. In this chapter, fuzzy sets and its extensions are discussed. Z-numbers along with weighted sum product assessment method is used to obtain a feasible solution to the location selection problem for installation of smog towers in a densely populated locality. The degrees of freedom namely degree of membership, degree of non-membership and the degree of hesitancy have been expressed as Zadeh’s Z-number with probability quotient for the degrees. Further, ranking of the alternatives based on Z-numbers and WASPAS to allocate smog towers to residential areas stricken by air pollution.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127008423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuzzy Multi-Attribute Decision Making (FMADM) Application on Decision Support Systems (SPK) to Diagnose a Type of Disease","authors":"Sugiyarto Surono, Mustika Sari","doi":"10.5772/INTECHOPEN.94614","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.94614","url":null,"abstract":"Fuzzy logic is widely applied to daily life with various methods. One method is fuzzy multi-attribute decision making (FMADM). FMADM is able to select the best alternative from a number of alternatives. In FMADM there is a supporting method so that the results obtained are accurate and optimal, namely the classic MADM method. One method in classic MADM is the Simple Additive Weighting (SAW) method. The SAW method is precisely used to minimize diagnostic errors, but if a decision support system is made, the SAW method still requires a further development method, one of which is the FMADM method with its development. The purposes of this study are to describe the steps of SAW method and the development of FDM in theory, implement SAW method and the development of FDM to diagnose a type of disease and implement it in a decision support system using GUI matlab. The completion step of those two methods is through two stages, the first one will go through FMADM stage with SAW, which is weighted sum, then the output will be used as input to the FDM method based on total integral values. The result of this study is proven by patient experienced initial symptoms of high fever at a temperature of 39.5° C - 40° C, very much spots appear in rumple leed test (> 50 petheciae), bleeding gums, rarely got nausea and headache, as well as diarrhea. Accuracy for the decision support system using MAPE was obtained 93% so that the decision support system with FMADM method to diagnose the disease was feasible to use.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130267616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence, Uniqueness and Approximate Solutions of Fuzzy Fractional Differential Equations","authors":"A. Harir, S. Melliani, L. S. Chadli","doi":"10.5772/intechopen.94000","DOIUrl":"https://doi.org/10.5772/intechopen.94000","url":null,"abstract":"In this paper, the Cauchy problem of fuzzy fractional differential equationsTγut=Ftut, ut0=u0,","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"25 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131874330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modified Expression to Evaluate the Correlation Coefficient of Dual Hesitant Fuzzy Sets and Its Application to Multi-Attribute Decision Making","authors":"Dr. Akanksha Singh","doi":"10.22541/au.159415553.37101935","DOIUrl":"https://doi.org/10.22541/au.159415553.37101935","url":null,"abstract":"The main objective of this paper is to understand all the existing correlation coefficients (CoCfs) to determine the relation and dependency between two variables of the fuzzy sets and its extensions for solving decision-making (DM) problems. To study the weighted CoCfs between two variables the environment chosen here is dual hesitant fuzzy set (DHFS) which is a generalization of a fuzzy set which considers the hesitant value of both the membership and non-membership elements of a set. Although there exists CoCfs for DHFS but a detailed mathematical analysis suggests that there exists some shortcomings in the existing CoCfs for DHFS. Thus, an attempt has been made to properly understand the root cause of the posed limitation in the weighted CoCfs for DHFS and hence, modified weighted CoCfs for DHFS has been proposed for solving DHFS multi-attribute decision making (MADM) problems i.e., DM problems in which rating value of each alternative over each criterion is represented by a DHFS in the real-life. Also, to validate the proposed expressions of weighted CoCfs for solving DHFS MADM problems, an existing real-life problem is evaluated and a systematic comparison of the solution is presented for clarification.","PeriodicalId":106488,"journal":{"name":"Fuzzy Systems [Working Title]","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117040231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}