{"title":"Ectomycorrhizal Fungi as Biofertilizers in Forestry","authors":"José Alfonso Domínguez-Núñez, Ada S. Albanesi","doi":"10.5772/intechopen.88585","DOIUrl":"https://doi.org/10.5772/intechopen.88585","url":null,"abstract":"Ectomycorrhizal (ECM) fungi play a fundamental role in the nutrient cycle in terrestrial ecosystems, especially in forest systems. In this chapter, the value of ECM fungi is reviewed from a global framework, not only to increase the production of edible fruit bodies and biomass of plants but also for the regular practices of reforestation and restoration of ecosystems, with implicit applications in biofer-tilization, bioremediation, and control of soil pathogens. Ecological functions of the ECM fungi are briefly reviewed. The direct implications of the ECM fungi in forestry are described. To do so, its role as a biotechnological tool in forest nursery production is briefly analyzed, as well as the role of mycorrhizal helper bacteria (MHB). Subsequently, the direct role as biofertilizers of the ECM fungi in forest management is discussed: reforestation, plantation management, and ecosystem restoration. The importance of ECM fungi to increase the tolerance of plants against biotic or abiotic stresses is analyzed.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"224 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121860251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbes for Iron Chlorosis Remediation in Peach","authors":"S. Singh","doi":"10.5772/intechopen.90496","DOIUrl":"https://doi.org/10.5772/intechopen.90496","url":null,"abstract":"Peach [Prunus persica (L.) Batsch] suffers from iron chlorosis when grown in calcareous soils due to low iron availability. Traditionally, soil and foliar application of ferrous sulphate, Fe-EDTA, Fe-EDDHA chelates, etc. is used as a corrective measure of chlorosis. The latter practice is quite effective. However, variable responses have been reported. Therefore, foliar spray cannot yet be considerd as a reliable method to control lime-induced chlorosis. Bioremediation constitutes innovative approaches for chlorosis correction. Iron fixations in calcareous soil, iron uptake by plants, and advance detection techniques and correction strategies in plants for iron chlorosis have been discussed in this chapter. The microbe-mediated correction strategies are identified as eco-friendly.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121843423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Bacteria as a Prominent Source of Biofertilizers","authors":"P. Elavarasi, M. Yuvaraj, P. Gayathri","doi":"10.5772/intechopen.89825","DOIUrl":"https://doi.org/10.5772/intechopen.89825","url":null,"abstract":"There are different types of microorganisms are used in the biofertilizers. Biofertilizers being essential components of organic farming play vital role in maintaining long-term soil fertility and sustainability; biofertilizers would be the viable option for farmers to increase productivity per unit area. These potential biological fertilizers would play a key role in productivity and sustainability of soil and also in protecting the environment as eco-friendly and cost-effective inputs for the farmers. At the same time, overlooking the significance of ensuring and maintaining a high quality standard of the product will have negative impact. Hence, a proper knowledge of bio-inoculants and its functioning will pave way to tape the resources in a better way. Thus, the chapter provides overview knowledge about different bacterial biofertilizers, its associations with plants and transformations of nutrients in soil. Adopting a rational approach to use and management of microbial fertilizers in sustainable agriculture thrives vast potential for the future.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132366032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meenakshi Singh, Manjari Mishra, D. K. Srivastava, Pradeep K. Singh
{"title":"Arbuscular Mycorrhiza-Associated Rhizobacteria and Biocontrol of Soilborne Phytopathogens","authors":"Meenakshi Singh, Manjari Mishra, D. K. Srivastava, Pradeep K. Singh","doi":"10.5772/intechopen.89266","DOIUrl":"https://doi.org/10.5772/intechopen.89266","url":null,"abstract":"The mutualistic symbiosis of most land plants with arbuscular mycorrhizal (AM) fungi has been shown to favor mineral and water nutrition and to increase resistance to abiotic and biotic stresses. The main mechanisms involved in the control of the disease symptoms and intraradical proliferation of soilborne phytopathogens are due to root colonization with AM fungi. The role of the rhizobacteria is shown to be specifically associated with extraradical network of the AM and mycorrhizosphere. The mycorrhizosphere can form a favorable environment for microorganisms which have potentiality to act antagonistic to pathogen abundance. It makes an additional advantage in identifying rhizobacteria from AM fungi structures or mycorrhizosphere, which often lead to the isolation of organisms having strong properties of antagonism on various soilborne pathogens. The ability of AM fungi to control soilborne diseases is mainly related to their capacity to stimulate the establishment of rhizobacteria against the favorable environment of pathogen within the mycorrhizosphere prior to the root infection. Recent advancement in sci-entific research has provided more clear picture in understanding the mechanisms involved in AM fungi/rhizobacteria interactions. Herein, this chapter includes the mechanisms of the AM fungi-mediated biocontrol, interactions between AM-associated bacteria and AM fungus extraradical network, AM-associated bacteria and biocontrol activities and unfavorable zone to pathogen development: the mycorrhizosphere.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130916961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. S. Chukwuka, A. O. Akanmu, B. O. Umukoro, M. Asemoloye, A. Odebode
{"title":"Biochar: A Vital Source for Sustainable Agriculture","authors":"K. S. Chukwuka, A. O. Akanmu, B. O. Umukoro, M. Asemoloye, A. Odebode","doi":"10.5772/intechopen.86568","DOIUrl":"https://doi.org/10.5772/intechopen.86568","url":null,"abstract":"The emerging concerns in sub-Saharan Africa are non-sustainability of agricultural and soil management practices threatening food security and environmental safety. Biochar, solid material obtained from thermochemical conversion of plants and/or animal biomass in an oxygen limited environment, is of great importance both agriculturally and environmentally. This chapter reviews the contributions of “biochar technology” to environmental sustainability and food security. This strategy addresses the declining food security issues, depleting soil and plant health challenges. When properly exploited, biochar will enhance soil fertility recovery, guarantee resilience to climate change challenges, and satisfy food production needs of growing global population. The positive impacts of biochar utilization on soil beneficial organisms in harnessing and controlling pests and diseases as well as revitalization of ecological niche make it a preferred option. Unfortunately, there is dearth of information on biochar mechanism to enhance bioremediation technology, which is still facing some challenges that need attention for adequate soil remediation. Many researchers have demonstrated bioremediation in laboratory scale under controlled environmental conditions; it may however be very problematic to establish the growth/survival of these biological entities in situ on heavily polluted soil where the environmental conditions cannot be controlled.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"81 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129621357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Fungi in Agriculture","authors":"M. Yuvaraj, M. Ramasamy","doi":"10.5772/intechopen.89718","DOIUrl":"https://doi.org/10.5772/intechopen.89718","url":null,"abstract":"Fungi are a group of eukaryotic organisms and source of food, organic acids, alcohol, antibiotics, growth-promoting substances, enzymes, and amino acids. They include microorganisms like molds, yeasts, and mushrooms. They live on dead or living plants or animals’ tissue. Fungi are very different from other living organisms; they are the primary decomposers of substances in the ecological system. Fungi are tremendous decomposer of organic waste material and most readily attack cellulose, lignins, gums, and other organic complex substances. Fungi can act also under a wide range of soil reaction from acidic to alkaline soil reactions. Fungi conjointly play a basic role in different physiological processes as well as mineral and water uptake, chemical change, stomatal movement, and biosynthesis of compounds termed biostimulants, auxins, lignan, and ethylene to enhance the flexibility of plants to ascertain and cope environmental stresses like drought, salinity, heat, cold, and significant metals.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117031443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Soil Microbes on Crop Yield against Edaphic Factors of Soil","authors":"S. Raut","doi":"10.5772/intechopen.88672","DOIUrl":"https://doi.org/10.5772/intechopen.88672","url":null,"abstract":"Soil degradation is one or the other form and consequent decline in soil productivity which has been the experience of the farmer since ancient times. As population pressure on agricultural land increases, concerns for ensuring sustained agricultural productivity of soils are being voiced more vociferously now. Chemical degradation of soils takes place as these accumulate soluble salts or toxic elements in amounts deleterious for plant growth or their chemical properties are so transformed as to adversely affect their productivity. The losses in soil productivity may also be accompanied by ecological obliteration and environmental degradation of the whole area. Continuous use of inorganic fertilizers coupled with depletion of organic matter results in deterioration of soil structure and soil productivity. It leads to reduce input/output ratio unless soils are replenished with organic matter through green manure, farm yard manure (FYM), compost or through microbial activity. Due to repeated application of microbes like blue green algae (BGA), biofertilizer soil organic carbon content is not only maintained but enriched too. The increase in carbon content of saline soil of Andhra Pradesh (India) has been shown to be up to 22%. The microbial polysaccharides are regarded as the most important natural products in the formation and stabilization of soil aggregates.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131647534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biostimulants and Their Role in Improving Plant Growth under Abiotic Stresses","authors":"A. Vasconcelos, L. H. G. Chaves","doi":"10.5772/intechopen.88829","DOIUrl":"https://doi.org/10.5772/intechopen.88829","url":null,"abstract":"Biostimulants are products that reduce the need for fertilizers and increase plant growth, resistance to water and abiotic stresses. In small concentrations, these substances are efficient, favoring the good performance of the plant’s vital processes, and allowing high yields and good quality products. In addition, biostimulants applied to plants enhance nutrition efficiency, abiotic stress tolerance and/or plant quality traits, regardless of its nutrient contents. Several researches have been developed in order to evaluate the biostimulants in improving plant development subjected to stresses, saline environment, and development of seedlings, among others. Furthermore, various raw materials have been used in biostimulant compositions, such as humic acids, hormones, algae extracts, and plant growth-promoting bacteria. In this sense, this chapter aims to approach the use of biostimulants in plant growth according to the raw material used in their compositions as well as their effects on plants subjected to abiotic stresses.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129218327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Debnath, D. Rawat, A. Mukherjee, S. Adhikary, R. Kundu
{"title":"Applications and Constraints of Plant Beneficial Microorganisms in Agriculture","authors":"S. Debnath, D. Rawat, A. Mukherjee, S. Adhikary, R. Kundu","doi":"10.5772/intechopen.89190","DOIUrl":"https://doi.org/10.5772/intechopen.89190","url":null,"abstract":"At present time, chemical fertilizers are more in practice for crop production, which failed to upkeep soil and environment quality and affected the sustainability of the agricultural production system. Conversely, biofertilizers are ecosystem friendly, one of the best modern tools for agriculture, and are used to improve soil fertility and quality. Biofertilizers have now emerged as a highly potent alternative to inorganic fertilizers and offer an ecologically sound and economically attractive route for augmenting nutrient supply and increasing crop production. These include live cells of diverse genera of microorganisms and have the potential to fix atmospheric nitrogen and solubilize and mobilize plant nutrients from insoluble form through microbiological process. It has also the potential to diminish the gap between nutrient supply through fertilizers and nutrient removal by crops. Hence, biofertilizers can be a feasible option to the farmers to increase crop productivity and should find greater acceptance from the extension workers and commercial biofertilizer manufacturers.","PeriodicalId":102029,"journal":{"name":"Biostimulants in Plant Science","volume":"168 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116900718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}