生物学最新文献

筛选
英文 中文
Stairway to the Golgi: Two paths VPS13B can go by. 通往高尔基体的阶梯VPS13B 有两条路可走
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-11-12 DOI: 10.1083/jcb.202411005
Roger Pons Lanau, Felix Campelo
{"title":"Stairway to the Golgi: Two paths VPS13B can go by.","authors":"Roger Pons Lanau, Felix Campelo","doi":"10.1083/jcb.202411005","DOIUrl":"10.1083/jcb.202411005","url":null,"abstract":"<p><p>VPS13 proteins mediate lipid transfer across membranes. Among them, VPS13B is associated with Golgi membranes, and VPS13B mutations cause Cohen syndrome. In this issue, Ugur et al. (https://doi.org/10.1083/jcb.202311189) and Du et al. (https://doi.org/10.1083/jcb.202402083) reveal new VPS13B interactors and their functions in Golgi organization and trafficking.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. 从实验室到生活:fNIRS 在真实世界环境中用于基于血流动力学的神经反馈的挑战和前景。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0087
Franziska Klein, Simon H Kohl, Michael Lührs, David M A Mehler, Bettina Sorger
{"title":"From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments.","authors":"Franziska Klein, Simon H Kohl, Michael Lührs, David M A Mehler, Bettina Sorger","doi":"10.1098/rstb.2023.0087","DOIUrl":"10.1098/rstb.2023.0087","url":null,"abstract":"<p><p>Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230087"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inducing representational change in the hippocampus through real-time neurofeedback. 通过实时神经反馈诱导海马体的表象变化
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0091
Kailong Peng, Jeffrey D Wammes, Alex Nguyen, Coraline Rinn Iordan, Kenneth A Norman, Nicholas B Turk-Browne
{"title":"Inducing representational change in the hippocampus through real-time neurofeedback.","authors":"Kailong Peng, Jeffrey D Wammes, Alex Nguyen, Coraline Rinn Iordan, Kenneth A Norman, Nicholas B Turk-Browne","doi":"10.1098/rstb.2023.0091","DOIUrl":"10.1098/rstb.2023.0091","url":null,"abstract":"<p><p>When you perceive or remember something, other related things come to mind, affecting how these competing items are subsequently perceived and remembered. Such behavioural consequences are believed to result from changes in the overlap of neural representations of these items, especially in the hippocampus. According to multiple theories, hippocampal overlap should increase (integration) when there is high coactivation between cortical representations. However, prior studies used indirect proxies for coactivation by manipulating stimulus similarity or task demands. Here, we induce coactivation in visual cortex more directly using closed-loop neurofeedback from real-time functional magnetic resonance imaging (fMRI). While viewing one object, participants were rewarded for activating the representation of another object as strongly as possible. Across multiple real-time fMRI sessions, participants succeeded in using this neurofeedback to increase coactivation. Compared with a baseline of untrained objects, this protocol led to memory integration in behaviour and the brain: the trained objects became harder for participants to discriminate behaviourally in a categorical perception task and harder to discriminate neurally from patterns of fMRI activity in their hippocampus as a result of losing unique features. These findings demonstrate that neurofeedback can be used to alter and combine memories.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230091"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation. 神经反馈:内源性神经调节的新领域和神经认知机制。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0081
James Sulzer, T Dorina Papageorgiou, Rainer Goebel, Talma Hendler
{"title":"Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation.","authors":"James Sulzer, T Dorina Papageorgiou, Rainer Goebel, Talma Hendler","doi":"10.1098/rstb.2023.0081","DOIUrl":"10.1098/rstb.2023.0081","url":null,"abstract":"<p><p>Neurofeedback (NF) is endogenous neuromodulation of circumscribed brain circuitry. While its use of real-time brain activity in a closed-loop system is similar to brain-computer interfaces, instead of controlling an external device like the latter, the goal of NF is to change a targeted brain function. In this special issue on NF, we present current and future methods for extracting and manipulating neural function, how these methods may reveal new insights about brain function, applications, and rarely discussed ethical considerations of guiding and interpreting the brain activity of others. Together, the articles in this issue outline the possibilities of NF use and impact in the real world, poising to influence the development of more effective and personalized NF protocols, improving the understanding of underlying psychological and neurological mechanisms and enhancing treatment precision for various neurological and psychiatric conditions.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230081"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurofeedback: potential for abuse and regulatory frameworks in the United States. 神经反馈:滥用的可能性和美国的监管框架。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0099
Fiona Furnari, Haesoo Park, Gideon Yaffe, Michelle Hampson
{"title":"Neurofeedback: potential for abuse and regulatory frameworks in the United States.","authors":"Fiona Furnari, Haesoo Park, Gideon Yaffe, Michelle Hampson","doi":"10.1098/rstb.2023.0099","DOIUrl":"10.1098/rstb.2023.0099","url":null,"abstract":"<p><p>Neurofeedback is a brain-training technique that continues to develop via ongoing innovations, and that has broadening potential impact. Once confined primarily to clinical and research settings, it is increasingly being used in the general population. Such development raises concerns about the current regulatory mechanisms and their adequacy in protecting patterns of economic and political decision-making from the novel technology. As studies have found neurofeedback to change subjects' preferences and mental associations covertly, there is a possibility it will be abused for political and commercial gains. Current regulatory practices (including disclaimer requirements, unfair and deceptive trade practice statutes and undue influence law) may be avenues from which to regulate neurofeedback influence. They are, however, limited. Regulating neurofeedback will face the line-drawing problem of determining when it induces an unacceptable level of influence. We suggest experiments that will clarify how the parameters of neurofeedback training affect its level of influence. In addition, we assert that the reactive nature of the traditional models of regulation will be inadequate against this and other rapidly transforming technologies. An integrated and proactive regulatory system designed for flexibility must be adopted to protect society in this era of modern technological advancement. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230099"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online self-evaluation of fMRI-based neurofeedback performance. 基于 fMRI 的神经反馈性能在线自我评估。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0089
Santiago Muñoz-Moldes, Anita Tursic, Michael Lührs, Judith Eck, Amaia Benitez Andonegui, Judith Peters, Axel Cleeremans, Rainer Goebel
{"title":"Online self-evaluation of fMRI-based neurofeedback performance.","authors":"Santiago Muñoz-Moldes, Anita Tursic, Michael Lührs, Judith Eck, Amaia Benitez Andonegui, Judith Peters, Axel Cleeremans, Rainer Goebel","doi":"10.1098/rstb.2023.0089","DOIUrl":"10.1098/rstb.2023.0089","url":null,"abstract":"<p><p>This study explores the subjective evaluation of supplementary motor area (SMA) regulation performance in a real-time functional magnetic resonance imaging neurofeedback (fMRI-NF) task. In fMRI-NF, people learn how to self-regulate their brain activity by performing mental actions to achieve a certain target level (TL) of blood-oxygen-level-dependent (BOLD) activation. Here, we studied two types of self-evaluation: performance predictions and perceived confidence in the prediction judgement. Participants completed three sessions of SMA regulation in a 7 T fMRI scanner, performing a mental drawing task. During each trial, they modulated their imagery strategy to achieve one of two different levels of SMA activation and reported a performance prediction and their confidence in the prediction before receiving delayed BOLD-activation feedback. Results show that participants' performance predictions improved with learning throughout the three sessions, and that these improvements were not driven exclusively by their knowledge of previous performance. Confidence reports on the other hand showed no change throughout training and did not correlate with better and worse predictions. In addition to shedding light on mechanisms of internal self-evaluation during neurofeedback training, these results also point to a dissociation between predictions of performance and confidence reports in the presence of feedback. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230089"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing ER-phagy and ER architecture in vivo. 体内ER吞噬和ER结构的可视化。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-11-18 DOI: 10.1083/jcb.202408061
Yongjuan Sang, Boran Li, Tinglin Su, Hanyu Zhan, Yue Xiong, Zhiming Huang, Changjing Wang, Xiaoxia Cong, Mengjie Du, Yang Wu, Hang Yu, Xi Yang, Kezhi Ding, Xuhua Wang, Xiaolong Miao, Weihua Gong, Liang Wang, Jingwei Zhao, Yiting Zhou, Wei Liu, Xinyang Hu, Qiming Sun
{"title":"Visualizing ER-phagy and ER architecture in vivo.","authors":"Yongjuan Sang, Boran Li, Tinglin Su, Hanyu Zhan, Yue Xiong, Zhiming Huang, Changjing Wang, Xiaoxia Cong, Mengjie Du, Yang Wu, Hang Yu, Xi Yang, Kezhi Ding, Xuhua Wang, Xiaolong Miao, Weihua Gong, Liang Wang, Jingwei Zhao, Yiting Zhou, Wei Liu, Xinyang Hu, Qiming Sun","doi":"10.1083/jcb.202408061","DOIUrl":"https://doi.org/10.1083/jcb.202408061","url":null,"abstract":"<p><p>ER-phagy is an evolutionarily conserved mechanism crucial for maintaining cellular homeostasis. However, significant gaps persist in our understanding of how ER-phagy and the ER network vary across cell subtypes, tissues, and organs. Furthermore, the pathophysiological relevance of ER-phagy remains poorly elucidated. Addressing these questions requires developing quantifiable methods to visualize ER-phagy and ER architecture in vivo. We generated two transgenic mouse lines expressing an ER lumen-targeting tandem RFP-GFP (ER-TRG) tag, either constitutively or conditionally. This approach enables precise spatiotemporal measurements of ER-phagy and ER structure at single-cell resolution in vivo. Systemic analysis across diverse organs, tissues, and primary cultures derived from these ER-phagy reporter mice unveiled significant variations in basal ER-phagy, both in vivo and ex vivo. Furthermore, our investigation uncovered substantial remodeling of ER-phagy and the ER network in different tissues under stressed conditions such as starvation, oncogenic transformation, and tissue injury. In summary, both reporter models represent valuable resources with broad applications in fundamental research and translational studies.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-cell autonomous regulation of cell-cell signaling and differentiation by mitochondrial ROS. 线粒体 ROS 对细胞-细胞信号传递和分化的非细胞自主调控。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-11-13 DOI: 10.1083/jcb.202401084
Yipeng Du, Lei Wang, Lizbeth Perez-Castro, Maralice Conacci-Sorrell, Matthew Sieber
{"title":"Non-cell autonomous regulation of cell-cell signaling and differentiation by mitochondrial ROS.","authors":"Yipeng Du, Lei Wang, Lizbeth Perez-Castro, Maralice Conacci-Sorrell, Matthew Sieber","doi":"10.1083/jcb.202401084","DOIUrl":"10.1083/jcb.202401084","url":null,"abstract":"<p><p>Mitochondrial reactive oxygen species (ROS) function intrinsically within cells to induce cell damage, regulate transcription, and cause genome instability. However, we know little about how mitochondrial ROS production non-cell autonomously impacts cell-cell signaling. Here, we show that mitochondrial dysfunction inhibits the plasma membrane localization of cell surface receptors that drive cell-cell communication during oogenesis. Within minutes, we found that mitochondrial ROS impairs exocyst membrane binding and leads to defective endosomal recycling. This endosomal defect impairs the trafficking of receptors, such as the Notch ligand Delta, during oogenesis. Remarkably, we found that overexpressing RAB11 restores ligand trafficking and rescues the developmental defects caused by ROS production. ROS production from adjacent cells acutely initiates a transcriptional response associated with growth and migration by suppressing Notch signaling and inducing extra cellualr matrix (ECM) remodeling. Our work reveals a conserved rapid response to ROS production that links mitochondrial dysfunction to the non-cell autonomous regulation of cell-cell signaling.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local glycolysis supports injury-induced axonal regeneration. 局部糖酵解支持损伤诱导的轴突再生。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-10-01 DOI: 10.1083/jcb.202402133
Luca Masin, Steven Bergmans, Annelies Van Dyck, Karl Farrow, Lies De Groef, Lieve Moons
{"title":"Local glycolysis supports injury-induced axonal regeneration.","authors":"Luca Masin, Steven Bergmans, Annelies Van Dyck, Karl Farrow, Lies De Groef, Lieve Moons","doi":"10.1083/jcb.202402133","DOIUrl":"10.1083/jcb.202402133","url":null,"abstract":"<p><p>Successful axonal regeneration following injury requires the effective allocation of energy. How axons withstand the initial disruption in mitochondrial energy production caused by the injury and subsequently initiate regrowth is poorly understood. Transcriptomic data showed increased expression of glycolytic genes after optic nerve crush in retinal ganglion cells with the co-deletion of Pten and Socs3. Using retinal cultures in a multicompartment microfluidic device, we observed increased regrowth and enhanced mitochondrial trafficking in the axons of Pten and Socs3 co-deleted neurons. While wild-type axons relied on mitochondrial metabolism, after injury, in the absence of Pten and Socs3, energy production was supported by local glycolysis. Specific inhibition of lactate production hindered injury survival and the initiation of regrowth while slowing down glycolysis upstream impaired regrowth initiation, axonal elongation, and energy production. Together, these observations reveal that glycolytic ATP, combined with sustained mitochondrial transport, is essential for injury-induced axonal regrowth, providing new insights into the metabolic underpinnings of axonal regeneration.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. Dachsous和Fat协同抑制Dachs-Dlish-Approximated复合体,从而控制生长。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-10-07 DOI: 10.1083/jcb.202406119
Hitoshi Matakatsu, Richard G Fehon
{"title":"Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth.","authors":"Hitoshi Matakatsu, Richard G Fehon","doi":"10.1083/jcb.202406119","DOIUrl":"10.1083/jcb.202406119","url":null,"abstract":"<p><p>Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a \"core complex\" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信