Pathogenic mechanisms and molecular features of a novel UL2 gene-deficient duck enteritis virus endemic to China.

IF 5.4 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-08-21 DOI:10.1080/21505594.2025.2547325
Dan Yin, Yuehua Gao, Mingqing Xu, Jianhua Wang, Xiaofei Song, Zhen Li, Jianyun Peng, Min Kang, Bai Wei, Chengdong Yu, Yingjuan Qian, Yong-Sam Jung, Feng Hu, Junfeng Lv, Zhuoming Qin, Yufeng Li
{"title":"Pathogenic mechanisms and molecular features of a novel UL2 gene-deficient duck enteritis virus endemic to China.","authors":"Dan Yin, Yuehua Gao, Mingqing Xu, Jianhua Wang, Xiaofei Song, Zhen Li, Jianyun Peng, Min Kang, Bai Wei, Chengdong Yu, Yingjuan Qian, Yong-Sam Jung, Feng Hu, Junfeng Lv, Zhuoming Qin, Yufeng Li","doi":"10.1080/21505594.2025.2547325","DOIUrl":null,"url":null,"abstract":"<p><p>Duck enteritis virus (DEV) was identified as the etiological agent responsible for an outbreak of morbidity and mortality in adult ducks on a farm in Jiangsu, China. Diagnostic approaches confirmed that the outbreak was caused by the highly pathogenic DEV-JS2024 isolate. The clinical progression of the disease, characterized by lethargy, anorexia, ocular discharge, and high mortality, was accompanied by extensive hemorrhagic lesions in critical organs such as the liver, spleen, lungs, and bursa of Fabricius, consistent with known signs of DEV infection. Genomic analysis of DEV-JS2024 revealed a 45% G+C content and 76 open reading frames. BLASTn analysis revealed that the genome of DEV-JS2024 shares the highest sequence similarity with the Chinese virulent strain CV and the DEV attenuated vaccine strain C-KCE in the database. These results indicate a close genetic relationship between DEV-JS2024 and both the virulent and attenuated strains, suggesting potential similarities in their genomic architecture. Comparative genomic analysis identified 28 nucleotide mutations, including 15 non-synonymous mutations potentially related to virulence factors. The study also highlighted the first reported 528 base pairs deletion in the <i>UL2</i> gene of a virulent strain, challenging its utility as a marker for distinguishing virulent from attenuated strains. Phylogenetic analysis suggested that DEV-JS2024 may result from recombination between the vaccine and virulent strains, further complicating our understanding of DEV pathogenicity. This study provides new insights into the molecular evolution of DEV and stresses the importance of continued genomic surveillance to enhance vaccine development and control measures for duck plague.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":" ","pages":"2547325"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2547325","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Duck enteritis virus (DEV) was identified as the etiological agent responsible for an outbreak of morbidity and mortality in adult ducks on a farm in Jiangsu, China. Diagnostic approaches confirmed that the outbreak was caused by the highly pathogenic DEV-JS2024 isolate. The clinical progression of the disease, characterized by lethargy, anorexia, ocular discharge, and high mortality, was accompanied by extensive hemorrhagic lesions in critical organs such as the liver, spleen, lungs, and bursa of Fabricius, consistent with known signs of DEV infection. Genomic analysis of DEV-JS2024 revealed a 45% G+C content and 76 open reading frames. BLASTn analysis revealed that the genome of DEV-JS2024 shares the highest sequence similarity with the Chinese virulent strain CV and the DEV attenuated vaccine strain C-KCE in the database. These results indicate a close genetic relationship between DEV-JS2024 and both the virulent and attenuated strains, suggesting potential similarities in their genomic architecture. Comparative genomic analysis identified 28 nucleotide mutations, including 15 non-synonymous mutations potentially related to virulence factors. The study also highlighted the first reported 528 base pairs deletion in the UL2 gene of a virulent strain, challenging its utility as a marker for distinguishing virulent from attenuated strains. Phylogenetic analysis suggested that DEV-JS2024 may result from recombination between the vaccine and virulent strains, further complicating our understanding of DEV pathogenicity. This study provides new insights into the molecular evolution of DEV and stresses the importance of continued genomic surveillance to enhance vaccine development and control measures for duck plague.

中国一种新型UL2基因缺陷鸭肠炎病毒的致病机制和分子特征
鸭肠炎病毒(DEV)被确定为导致中国江苏某农场成年鸭发病和死亡暴发的病原。诊断方法证实,疫情是由高致病性DEV-JS2024分离株引起的。该疾病的临床进展以嗜睡、厌食、眼溢液和高死亡率为特征,并伴有肝、脾、肺和法氏囊等关键器官的广泛出血性病变,与DEV感染的已知体征一致。基因组分析显示DEV-JS2024的G+C含量为45%,有76个开放阅读框。BLASTn分析显示,DEV- js2024基因组与数据库中中国毒力株CV和DEV减毒疫苗株C-KCE的序列相似性最高。这些结果表明,DEV-JS2024与毒毒株和弱毒株之间存在密切的遗传关系,表明它们在基因组结构上可能存在相似性。比较基因组分析确定了28个核苷酸突变,包括15个可能与毒力因素相关的非同义突变。该研究还强调了首次报道的毒力菌株UL2基因中528个碱基对的缺失,挑战了其作为区分毒力菌株和减毒菌株的标记的实用性。系统发育分析表明,DEV- js2024可能是疫苗与毒力毒株重组的结果,这使我们对DEV致病性的认识进一步复杂化。本研究为鸭鼠疫的分子进化提供了新的见解,并强调了持续的基因组监测对加强鸭鼠疫疫苗开发和控制措施的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信