VirulencePub Date : 2025-12-01Epub Date: 2025-03-06DOI: 10.1080/21505594.2025.2474866
Wei Peng, Qinggen Jiang, Yuting Wu, Li He, Bei Li, Weicheng Bei, Xia Yang
{"title":"The role of glutathione for oxidative stress and pathogenicity of <i>Streptococcus suis</i>.","authors":"Wei Peng, Qinggen Jiang, Yuting Wu, Li He, Bei Li, Weicheng Bei, Xia Yang","doi":"10.1080/21505594.2025.2474866","DOIUrl":"10.1080/21505594.2025.2474866","url":null,"abstract":"<p><p><i>Streptococcus suis</i> is an important zoonotic pathogen that threatens human and pig health. During infection, the host can impose oxidative stress to resist pathogen invasion. Resistance to oxidative toxicity is an important factor for pathogens. Glutathione synthesis contributes to reactive oxygen species (ROS) detoxification in bacterial cells. Little is known about the roles of glutathione synthesis and transport in <i>S</i>. <i>suis</i>. In this study, we demonstrated that glutathione treatment increased oxidative stress tolerance in <i>S</i>. <i>suis</i>. GshAB and GshT were found in <i>S</i>. <i>suis</i> glutathione synthesis and import by bioinformatics. In vitro, inactivation of <i>gshAB</i> and <i>gshT</i> led to increased sensitivity to oxidative stress. Inactivation of <i>gshT</i> led to growth defects in the medium. The intracellular glutathione content of <i>gshAB</i> or <i>gshT</i> deletion mutants was lower than that of wild type (WT) strain. The phagocytic resistance of <i>gshAB</i> and <i>gshT</i> mutants was lower than that of the WT strain. Moreover, the virulence of <i>gshAB</i> and <i>gshT</i> deletion mutants was significantly lower than that of the WT strain in mouse survival and tissue loading experiments. In conclusion, these results revealed the functions of GshAB and GshT in the pathogenesis of <i>S. suis</i>. These findings enhance our understanding of bacterial virulence mechanisms and may provide a new avenue for therapeutic intervention aimed at curbing <i>S. suis</i> infections.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2474866"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coupling mechanisms coordinating mRNA translation with stages of the mRNA lifecycle.","authors":"Valeria Famà, Lucia Coscujuela Tarrero, Roberto Albanese, Lorenzo Calviello, Stefano Biffo, Mattia Pelizzola, Mattia Furlan","doi":"10.1080/15476286.2025.2483001","DOIUrl":"10.1080/15476286.2025.2483001","url":null,"abstract":"<p><p>Gene expression involves a series of consequential processes, beginning with mRNA synthesis and culminating in translation. Traditionally studied as a linear sequence of events, recent findings challenge this perspective, revealing coupling mechanisms that coordinate key steps of gene expression, even when spatially and temporally distant. In this review, we focus on translation, the final stage of gene expression, and examine its coupling with key stages of mRNA metabolism: synthesis, processing, export, and decay. For each of these processes, we provide an overview of known instances of coupling with translation. Furthermore, we discuss the role of high-throughput technologies in uncovering these intricate interactions on a genome-wide scale. Finally, we highlight key challenges and propose future directions to advance our understanding of how coupling mechanisms orchestrate robust and adaptable gene expression programs.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2025-12-01Epub Date: 2025-03-24DOI: 10.1080/15476286.2025.2483484
Laura Contreras, Alfonso Rodríguez-Gil, Jordi Muntané, Jesús de la Cruz
{"title":"Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells.","authors":"Laura Contreras, Alfonso Rodríguez-Gil, Jordi Muntané, Jesús de la Cruz","doi":"10.1080/15476286.2025.2483484","DOIUrl":"10.1080/15476286.2025.2483484","url":null,"abstract":"<p><p>Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA <i>cis</i>-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox ReportPub Date : 2025-12-01Epub Date: 2025-01-23DOI: 10.1080/13510002.2024.2444755
Si Liu, Li Chen, Yunxiao Shang
{"title":"CEACAM5 exacerbates asthma by inducing ferroptosis and autophagy in airway epithelial cells through the JAK/STAT6-dependent pathway.","authors":"Si Liu, Li Chen, Yunxiao Shang","doi":"10.1080/13510002.2024.2444755","DOIUrl":"10.1080/13510002.2024.2444755","url":null,"abstract":"<p><strong>Objectives: </strong>Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology.</p><p><strong>Methods: </strong>Bioinformatics was used to identify key asthmarelated genes. An ovalbumin-sensitized mouse model and an IL-13-stimulated Beas-2B cell model were established for further investigation.</p><p><strong>Results: </strong>Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a crucial gene in asthma. CEACAM5 expression was elevated in asthmatic mouse lung tissues and IL-13-stimulated Beas-2B cells, primarily in bronchial epithelial cells. CEACAM5 induced reactive oxygen species (ROS), lipid peroxidation, and ferroptosis. Interfering with CEACAM5 reduced ROS, malondialdehyde levels, and enhanced antioxidant capacity, while inhibiting iron accumulation and autophagy. Overexpression of CEACAM5 in IL-13-stimulated cells activated the JAK/STAT6 pathway, which was necessary for CEACAM5-induced autophagy, ROS accumulation, lipid peroxidation, and ferroptosis.</p><p><strong>Conclusion: </strong>CEACAM5 promotes ferroptosis and autophagy in airway epithelial cells via the JAK/STAT6 pathway, exacerbating asthma symptoms. It represents a potential target for clinical treatment.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2444755"},"PeriodicalIF":5.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoregulation of the biosynthetic activity of fungus <i>Inonotus obliquus</i> using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation.","authors":"Oksana Mykchaylova, Anatoliy Negriyko, Nadiia Matvieieva, Kostiantyn Lopatko, Natalia Poyedinok","doi":"10.1080/21655979.2025.2458371","DOIUrl":"10.1080/21655979.2025.2458371","url":null,"abstract":"<p><p>This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom <i>Inonotus obliquus in vitro</i>. Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of <i>I. obliquus</i> (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of <i>I. obliquus</i> mycelia by 12.3-35.4%. Silver nanoparticles (AgNPs) in a nutrient medium suppressed the biosynthesis of extracellular polysaccharides, whereas laser irradiation in the same medium increased the synthesis of intracellular polysaccharides by 9.7 times. Magnesium nanoparticles (MgNPs) and iron nanoparticles (FeNPs) inhibited the synthesis of intracellular polysaccharides in the mycelial mass of <i>I. obliquus</i>. At the same time, laser irradiation of the inoculum with MgNPs, on the contrary, induced a sharp increase in the amount of polysaccharides in the culture liquid (20 times). Treatment of the inoculum in a medium with nanoparticles with a laser caused an intensification of the synthesis of flavonoids in the mycelial mass and an increase in the synthesis of melanin pigments (25-140%). The results obtained suggest the possibility of the complex use of colloidal solutions of Fe, Ag, and Mg nanoparticles and low-intensity laser radiation as environmentally friendly factors for regulating biosynthetic activity in the biotechnology of cultivating the valuable medicinal mushroom <i>I. obliquus</i>.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458371"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BioengineeredPub Date : 2025-12-01Epub Date: 2025-02-04DOI: 10.1080/21655979.2025.2458362
Ophélie Uriot, Charlotte Deschamps, Julien Scanzi, Morgane Brun, Nicolas Kerckhove, Christian Dualé, Elora Fournier, Claude Durif, Sylvain Denis, Michel Dapoigny, Philippe Langella, Monique Alric, Lucie Etienne-Mesmin, Blanquet-Diot Stéphanie
{"title":"Gut microbial dysbiosis associated to diarrheic irritable bowel syndrome can be efficiently simulated in the Mucosal ARtificial COLon (M-ARCOL).","authors":"Ophélie Uriot, Charlotte Deschamps, Julien Scanzi, Morgane Brun, Nicolas Kerckhove, Christian Dualé, Elora Fournier, Claude Durif, Sylvain Denis, Michel Dapoigny, Philippe Langella, Monique Alric, Lucie Etienne-Mesmin, Blanquet-Diot Stéphanie","doi":"10.1080/21655979.2025.2458362","DOIUrl":"10.1080/21655979.2025.2458362","url":null,"abstract":"<p><p>Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, with diarrhea-predominant IBS (IBS-D) as the most frequent subtype. The implication of gut microbiota in the disease's etiology is not fully understood. <i>In vitro</i> gut systems can offer a great alternative to <i>in vivo</i> assays in preclinical studies, but no model reproducing IBS-related dysbiotic microbiota has been developed. Thanks to a large literature review, a new Mucosal ARtifical COLon (M-ARCOL) adapted to IBS-D physicochemical and nutritional conditions was set-up. To validate the model and further exploit its potential in a mechanistic study, <i>in vitro</i> fermentations were performed using bioreactors inoculated with stools from healthy individuals (<i>n</i> = 4) or IBS-D patients (<i>n</i> = 4), when the M-ARCOL was set-up under healthy or IBS-D conditions. Setting IBS-D parameters in M-ARCOL inoculated with IBS-D stools maintained the key microbial features associated to the disease <i>in vivo</i>, validating the new system. In particular, compared to the healthy control, the IBS-D model was characterized by a decreased bacterial diversity, together with a lower abundance of <i>Rikenellaceae</i> and <i>Prevotellaceae</i>, but a higher level of <i>Proteobacteria</i> and <i>Akkermansiaceae</i>. Of interest, applying IBS-D parameters to healthy stools was not sufficient to trigger IBS-D dysbiosis and applying healthy parameters to IBS-D stools was not enough to restore microbial balance. This validated IBS-D colonic model can be used as a robust <i>in vitro</i> platform for studies focusing on gut microbes in the absence of the host, as well as for testing food and microbiota-related interventions aimed at personalized restoration of gut microbiota eubiosis.</p>","PeriodicalId":8919,"journal":{"name":"Bioengineered","volume":"16 1","pages":"2458362"},"PeriodicalIF":4.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VirulencePub Date : 2025-12-01Epub Date: 2025-02-21DOI: 10.1080/21505594.2025.2467161
Xiangfu Wen, Jia Cheng, Mingchao Liu
{"title":"Virulence factors and therapeutic methods of <i>Trueperella pyogenes</i>: A review.","authors":"Xiangfu Wen, Jia Cheng, Mingchao Liu","doi":"10.1080/21505594.2025.2467161","DOIUrl":"10.1080/21505594.2025.2467161","url":null,"abstract":"<p><p><i>Trueperella pyogenes</i> is a prevalent opportunistic pathogen responsible for a wide range of infections in livestock and wildlife, such as in cattle, pigs, European bison and forest musk deer. Much of the successful infection of <i>T. pyogenes</i> relies on its virulence factors, including pyolysin as well as adhesion factors. The swift rise of bacterial resistance has highlighted the urgent need for developing new therapeutic strategies. Currently, virulence factor-mediated vaccine development and other therapeutic approaches are widely regarded as the primary interventions for addressing diseases associated with this pathogen. This review examines the broader virulence potential of <i>T. pyogenes</i>, focusing on haemolysin, host cell adhesion proteins, the prevalence of antibiotic resistance, and the development of vaccines mediated by virulence factors. Additionally, it discusses current and future approaches aimed at improving therapeutic interventions.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2467161"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2025-12-01Epub Date: 2025-03-03DOI: 10.1080/15592294.2025.2473770
Yuexi Ma, Cayla Boycott, Jiaxi Zhang, Rekha Gomilar, Tony Yang, Barbara Stefanska
{"title":"SIRT1/DNMT3B-mediated epigenetic gene silencing in response to phytoestrogens in mammary epithelial cells.","authors":"Yuexi Ma, Cayla Boycott, Jiaxi Zhang, Rekha Gomilar, Tony Yang, Barbara Stefanska","doi":"10.1080/15592294.2025.2473770","DOIUrl":"10.1080/15592294.2025.2473770","url":null,"abstract":"<p><p>We performed an integrated analysis of genome-wide DNA methylation and expression datasets in normal cells and healthy animals exposed to polyphenols with estrogenic activity (i.e. phytoestrogens). We identified that phytoestrogens target genes linked to disrupted cellular homeostasis, e.g. genes limiting DNA break repair (<i>RNF169</i>) or promoting ribosomal biogenesis (<i>rDNA</i>). Existing evidence suggests that DNA methylation may be governed by sirtuin 1 (SIRT1) deacetylase via interactions with DNA methylating enzymes, specifically DNMT3B. Since SIRT1 was reported to be regulated by phytoestrogens, we test whether phytoestrogens suppress genes related to disrupted homeostasis via SIRT1/DNMT3B-mediated transcriptional silencing. Human MCF10A mammary epithelial cells were treated with phytoestrogens, pterostilbene (PTS) or genistein (GEN), followed by analysis of cell growth, DNA methylation, gene expression, and SIRT1/DNMT3B binding. SIRT1 occupancy at the selected phytoestrogen-target genes, <i>RNF169</i> and <i>rDNA</i>, was accompanied by consistent promoter hypermethylation and gene downregulation in response to GEN, but not PTS. GEN-mediated hypermethylation and SIRT1 binding were linked to a robust DNMT3B enrichment at <i>RNF169</i> and <i>rDNA</i> promoters. This was not observed in cells exposed to PTS, suggesting a distinct mechanism of action. Although both SIRT1 and DNMT3B bind to <i>RNF169</i> and <i>rDNA</i> promoters upon GEN, the two proteins do not co-occupy the regions. Depletion of SIRT1 abolishes GEN-mediated decrease in <i>rDNA</i> expression, suggesting SIRT1-dependent epigenetic suppression of <i>rDNA</i> by GEN. These findings enhance our understanding of the role of SIRT1-DNMT3B interplay in epigenetic mechanisms mediating the impact of phytoestrogens on cell biology and cellular homeostasis.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2473770"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143540624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2025-12-01Epub Date: 2025-01-11DOI: 10.1080/15476286.2025.2449775
Martin Hart, Caroline Diener, Stefanie Rheinheimer, Tim Kehl, Andreas Keller, Hans-Peter Lenhof, Eckart Meese
{"title":"Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction.","authors":"Martin Hart, Caroline Diener, Stefanie Rheinheimer, Tim Kehl, Andreas Keller, Hans-Peter Lenhof, Eckart Meese","doi":"10.1080/15476286.2025.2449775","DOIUrl":"10.1080/15476286.2025.2449775","url":null,"abstract":"<p><p>The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approximately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the analysis of miRNA-regulated cellular networks.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA BiologyPub Date : 2025-12-01Epub Date: 2025-01-13DOI: 10.1080/15476286.2024.2449278
Waqasuddin Khan, Samiah Kanwar, Mohammad Mohsin Mannan, Furqan Kabir, Naveed Iqbal, Mehdia Nadeem Rajab Ali, Syeda Rehana Zia, Sharmeen Mian, Fatima Aziz, Sahrish Muneer, Adil Kalam, Akram Hussain, Iqra Javed, Muhammad Farrukh Qazi, Javairia Khalid, Muhammad Imran Nisar, Fyezah Jehan
{"title":"Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth.","authors":"Waqasuddin Khan, Samiah Kanwar, Mohammad Mohsin Mannan, Furqan Kabir, Naveed Iqbal, Mehdia Nadeem Rajab Ali, Syeda Rehana Zia, Sharmeen Mian, Fatima Aziz, Sahrish Muneer, Adil Kalam, Akram Hussain, Iqra Javed, Muhammad Farrukh Qazi, Javairia Khalid, Muhammad Imran Nisar, Fyezah Jehan","doi":"10.1080/15476286.2024.2449278","DOIUrl":"10.1080/15476286.2024.2449278","url":null,"abstract":"<p><p>This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the <i>in-silico</i> analyses. The results of this study provide insights into the role of DE ncRNAs and their impact on pregnancy-related biological pathways that could lead to PTB. Further studies are required to elucidate the precise mechanisms by which these DE ncRNAs contribute to adverse pregnancy outcomes (APOs) and their potential as diagnostic biomarkers.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}