Enterobactin: A key player in bacterial iron acquisition and virulence and its implications for vaccine development and antimicrobial strategies.

IF 5.4 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-09-19 DOI:10.1080/21505594.2025.2563018
Mohadese Amiri, Mehdi Golchin, Majid Jamshidian Mojaver, Hamidreza Farzin, Abbas Hajizade
{"title":"Enterobactin: A key player in bacterial iron acquisition and virulence and its implications for vaccine development and antimicrobial strategies.","authors":"Mohadese Amiri, Mehdi Golchin, Majid Jamshidian Mojaver, Hamidreza Farzin, Abbas Hajizade","doi":"10.1080/21505594.2025.2563018","DOIUrl":null,"url":null,"abstract":"<p><p>Enterobactin, a high-affinity siderophore produced by <i>Escherichia coli</i> and other enteric pathogens, plays a critical role in bacterial iron acquisition and virulence. By sequestering iron from host environments, enterobactin enables bacterial survival and proliferation, even under iron-limited conditions typical of host tissues. This review explores the biosynthesis and regulation of enterobactin, highlighting its contribution to bacterial pathogenesis and immune evasion. We discuss the potential of targeting enterobactin for the development of live-attenuated vaccines, emphasizing the attenuation of virulence through genetic knockout of enterobactin biosynthesis genes (e.g. <i>entB</i>). Additionally, we examine enterobactin as a promising target for novel antimicrobial strategies, including small-molecule inhibitors and siderophore-based \"Trojan horse\" antibiotics. Beyond medical applications, we also explore the biotechnological and environmental potential of enterobactin, such as its use in bioremediation and drug delivery systems. Finally, we identify key gaps in current research and propose future directions for harnessing enterobactin to combat bacterial infections and address global health challenges. This review underscores the multifaceted role of enterobactin in bacterial biology and its potential as a cornerstone for innovative therapeutic and biotechnological applications.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":" ","pages":"2563018"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2563018","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enterobactin, a high-affinity siderophore produced by Escherichia coli and other enteric pathogens, plays a critical role in bacterial iron acquisition and virulence. By sequestering iron from host environments, enterobactin enables bacterial survival and proliferation, even under iron-limited conditions typical of host tissues. This review explores the biosynthesis and regulation of enterobactin, highlighting its contribution to bacterial pathogenesis and immune evasion. We discuss the potential of targeting enterobactin for the development of live-attenuated vaccines, emphasizing the attenuation of virulence through genetic knockout of enterobactin biosynthesis genes (e.g. entB). Additionally, we examine enterobactin as a promising target for novel antimicrobial strategies, including small-molecule inhibitors and siderophore-based "Trojan horse" antibiotics. Beyond medical applications, we also explore the biotechnological and environmental potential of enterobactin, such as its use in bioremediation and drug delivery systems. Finally, we identify key gaps in current research and propose future directions for harnessing enterobactin to combat bacterial infections and address global health challenges. This review underscores the multifaceted role of enterobactin in bacterial biology and its potential as a cornerstone for innovative therapeutic and biotechnological applications.

Abstract Image

Abstract Image

Abstract Image

肠obactin:细菌铁获取和毒力的关键参与者及其对疫苗开发和抗菌策略的影响。
肠obactin是一种由大肠杆菌和其他肠道病原体产生的高亲和力铁载体,在细菌铁获取和毒力中起着关键作用。通过从宿主环境中隔离铁,肠杆菌素使细菌能够存活和增殖,即使在典型的宿主组织铁限制条件下也是如此。本文综述了肠obactin的生物合成和调控,重点介绍了肠obactin在细菌发病和免疫逃避中的作用。我们讨论了针对肠obactin开发减毒活疫苗的潜力,强调通过基因敲除肠obactin生物合成基因(如entB)来减弱毒力。此外,我们研究了肠obactin作为新型抗菌策略的有希望的靶点,包括小分子抑制剂和基于铁载体的“特洛伊木马”抗生素。除了医疗应用,我们还探索肠杆菌素的生物技术和环境潜力,例如它在生物修复和药物输送系统中的应用。最后,我们确定了当前研究中的关键差距,并提出了利用肠杆菌素对抗细菌感染和应对全球健康挑战的未来方向。这篇综述强调肠obactin在细菌生物学中的多方面作用及其作为创新治疗和生物技术应用的基石的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信