大豆驯化改变了根际微生物组合,破坏了潜在的细菌-原生生物关系。

IF 6.9 1区 生物学 Q1 MICROBIOLOGY
Microbiological research Pub Date : 2025-12-01 Epub Date: 2025-07-30 DOI:10.1016/j.micres.2025.128295
Shaoguan Zhao, Chen Liu, Ying Yuan, Qingyun Zhao, Zhiyang Zhang, Xiangyu Ren, Yang Yue, Shuo Sun, Shiqi Sun, Qi Zhang, Guangnan Xing, Ming Wang, Wu Xiong, Qirong Shen
{"title":"大豆驯化改变了根际微生物组合,破坏了潜在的细菌-原生生物关系。","authors":"Shaoguan Zhao, Chen Liu, Ying Yuan, Qingyun Zhao, Zhiyang Zhang, Xiangyu Ren, Yang Yue, Shuo Sun, Shiqi Sun, Qi Zhang, Guangnan Xing, Ming Wang, Wu Xiong, Qirong Shen","doi":"10.1016/j.micres.2025.128295","DOIUrl":null,"url":null,"abstract":"<p><p>Crop domestication has long been known to reshape rhizosphere microbial communities, yet research has focused disproprotionately on bacteria and fungal responses to crop domestication while neglecting protist communities. Protists, as key microbial predators regulating bacterial populations and thereby their functionalities, remain understudied in this context. Here, we investigate the influence of soybean domestication on both bacterial and protist communities, with a focus on the reorganization of ecological strategies, specifically generalists and specialists, within these microbiomes. We analyzed 270 rhizosphere samples from 27 domesticated and 63 wild soybean varieties. Domestication significantly altered community compositions of bacterial communities, with wild soybeans harboring higher proprotions of Pseudomonadota (71.4 %) and Bacillota (4.8 %), while domesticated soybeans exhibited an enrichment of Bacteroidota (11.0 %). Protist communities also diverged: wild soybeans were dominated by Cercozoa (58.2 %) and Gyrista (23.5 %), while domesticated plants had more Ciliophora (7.1 %) and Evosea (5.7 %). Domesticated soybeans hosted fewer generalist and specialist bacteria but more generalist protists, suggesting divergent microbial responses to domestication. Correlation analyses revealed that bacterial and protist generalists exhibited strong positive correlations with each other. At the same time, bacterial and protist specialists also showed positive correlations in wild soybeans-patterns that were largely absent in their domesticated counterparts. Functionally, wild soybeans supported more ureolytic and methylotrophic bacteria, while domesticated soybeans favored nitrate-respiration taxa. Notably, predatory protists in wild soybeans were significantly correlated with bacteria involved in carbon and nitrogen cycling, a key ecological relationship lost with domestication. These findings suggest that domestication exerts different selection pressures on bacteria and protists, disrupting potential relationships between bacterial and protist functional groups.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"301 ","pages":"128295"},"PeriodicalIF":6.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soybean domestication alters rhizosphere microbial assembly and disrupts the potential bacteria-protist relationships.\",\"authors\":\"Shaoguan Zhao, Chen Liu, Ying Yuan, Qingyun Zhao, Zhiyang Zhang, Xiangyu Ren, Yang Yue, Shuo Sun, Shiqi Sun, Qi Zhang, Guangnan Xing, Ming Wang, Wu Xiong, Qirong Shen\",\"doi\":\"10.1016/j.micres.2025.128295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crop domestication has long been known to reshape rhizosphere microbial communities, yet research has focused disproprotionately on bacteria and fungal responses to crop domestication while neglecting protist communities. Protists, as key microbial predators regulating bacterial populations and thereby their functionalities, remain understudied in this context. Here, we investigate the influence of soybean domestication on both bacterial and protist communities, with a focus on the reorganization of ecological strategies, specifically generalists and specialists, within these microbiomes. We analyzed 270 rhizosphere samples from 27 domesticated and 63 wild soybean varieties. Domestication significantly altered community compositions of bacterial communities, with wild soybeans harboring higher proprotions of Pseudomonadota (71.4 %) and Bacillota (4.8 %), while domesticated soybeans exhibited an enrichment of Bacteroidota (11.0 %). Protist communities also diverged: wild soybeans were dominated by Cercozoa (58.2 %) and Gyrista (23.5 %), while domesticated plants had more Ciliophora (7.1 %) and Evosea (5.7 %). Domesticated soybeans hosted fewer generalist and specialist bacteria but more generalist protists, suggesting divergent microbial responses to domestication. Correlation analyses revealed that bacterial and protist generalists exhibited strong positive correlations with each other. At the same time, bacterial and protist specialists also showed positive correlations in wild soybeans-patterns that were largely absent in their domesticated counterparts. Functionally, wild soybeans supported more ureolytic and methylotrophic bacteria, while domesticated soybeans favored nitrate-respiration taxa. Notably, predatory protists in wild soybeans were significantly correlated with bacteria involved in carbon and nitrogen cycling, a key ecological relationship lost with domestication. These findings suggest that domestication exerts different selection pressures on bacteria and protists, disrupting potential relationships between bacterial and protist functional groups.</p>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":\"301 \",\"pages\":\"128295\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.micres.2025.128295\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2025.128295","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们早就知道作物驯化会重塑根际微生物群落,但研究主要集中在细菌和真菌对作物驯化的反应上,而忽视了原生生物群落。原生生物作为调节细菌种群及其功能的关键微生物捕食者,在此背景下仍未得到充分研究。在这里,我们研究了大豆驯化对细菌和原生生物群落的影响,重点研究了这些微生物群中生态策略的重组,特别是通才和专才。对27个驯化大豆品种和63个野生大豆品种的270份根际样品进行了分析。驯化显著改变了细菌群落的组成,野生大豆含有较高比例的假单胞菌(71.4 %)和芽孢杆菌(4.8 %),而驯化大豆含有丰富的拟杆菌(11.0 %)。原生植物群落也出现分化,野生大豆以Cercozoa(58.2% %)和Gyrista(23.5% %)为主,驯化大豆以Ciliophora(7.1 %)和Evosea(5.7 %)为主。驯化的大豆携带的多面手和专门性细菌较少,但携带的多面手原生生物较多,这表明微生物对驯化的反应存在差异。相关分析表明,细菌和原生生物通才具有很强的正相关关系。与此同时,细菌和原生生物专家在野生大豆中也显示出正相关性,这在驯化大豆中基本上是不存在的。在功能上,野生大豆支持更多的溶尿菌和甲基营养菌,而驯化大豆支持硝酸盐呼吸类群。值得注意的是,野生大豆中的掠食性原生生物与参与碳氮循环的细菌显著相关,这是驯化过程中缺失的一种关键生态关系。这些发现表明,驯化对细菌和原生生物施加了不同的选择压力,破坏了细菌和原生生物功能群之间的潜在关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soybean domestication alters rhizosphere microbial assembly and disrupts the potential bacteria-protist relationships.

Crop domestication has long been known to reshape rhizosphere microbial communities, yet research has focused disproprotionately on bacteria and fungal responses to crop domestication while neglecting protist communities. Protists, as key microbial predators regulating bacterial populations and thereby their functionalities, remain understudied in this context. Here, we investigate the influence of soybean domestication on both bacterial and protist communities, with a focus on the reorganization of ecological strategies, specifically generalists and specialists, within these microbiomes. We analyzed 270 rhizosphere samples from 27 domesticated and 63 wild soybean varieties. Domestication significantly altered community compositions of bacterial communities, with wild soybeans harboring higher proprotions of Pseudomonadota (71.4 %) and Bacillota (4.8 %), while domesticated soybeans exhibited an enrichment of Bacteroidota (11.0 %). Protist communities also diverged: wild soybeans were dominated by Cercozoa (58.2 %) and Gyrista (23.5 %), while domesticated plants had more Ciliophora (7.1 %) and Evosea (5.7 %). Domesticated soybeans hosted fewer generalist and specialist bacteria but more generalist protists, suggesting divergent microbial responses to domestication. Correlation analyses revealed that bacterial and protist generalists exhibited strong positive correlations with each other. At the same time, bacterial and protist specialists also showed positive correlations in wild soybeans-patterns that were largely absent in their domesticated counterparts. Functionally, wild soybeans supported more ureolytic and methylotrophic bacteria, while domesticated soybeans favored nitrate-respiration taxa. Notably, predatory protists in wild soybeans were significantly correlated with bacteria involved in carbon and nitrogen cycling, a key ecological relationship lost with domestication. These findings suggest that domestication exerts different selection pressures on bacteria and protists, disrupting potential relationships between bacterial and protist functional groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信