东北地区腹泻犊牛细小病毒1型的分离与综合鉴定:进化与生物学研究

IF 5.4 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-09-24 DOI:10.1080/21505594.2025.2561830
Mingze Chen, Yingying Ma, Yue Yan, Xihuai Xue, Wei Wu, Fei Teng, Guiwei Li, Chenyu Zheng, Qiying Han, Shilong You, Yanping Jiang, Jiaxuan Li, Wen Cui, Feipeng Zhao, Hongzhe Zhao, Xinyuan Qiao
{"title":"东北地区腹泻犊牛细小病毒1型的分离与综合鉴定:进化与生物学研究","authors":"Mingze Chen, Yingying Ma, Yue Yan, Xihuai Xue, Wei Wu, Fei Teng, Guiwei Li, Chenyu Zheng, Qiying Han, Shilong You, Yanping Jiang, Jiaxuan Li, Wen Cui, Feipeng Zhao, Hongzhe Zhao, Xinyuan Qiao","doi":"10.1080/21505594.2025.2561830","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine parvovirus (BPV) is among the pathogens associated with respiratory, digestive, and reproductive disorders in cattle, contributing to significant economic losses in the global cattle industry. To investigate the prevalence and genetic variability of BPV in diarrheic cattle, 14 BPV strains were isolated from 673 bovine diarrhea samples (2017-2022, Northeast China) using BT cells. Notably, the DQ7498 strain exhibited the highest proliferation efficiency (titer reaching 10<sup>8.12</sup>TCID<sub>50</sub>/mL). Sensitive cell detection assays showed isolated strains stably serially passaged only in BT and bovine lung cells. Electron microscopy revealed that all isolates as non-enveloped icosahedrons structures (approximately 25 nm in diameter), consistent with parvovirus morphology. Complete coding sequence (CDS) and phylogenetic analysis revealed that the 14 isolates strains were closely related to BPV1 reference strains (DQ335247, NC001540), with high genetic identity (96.5%-99%). Recombination analysis identified genomic recombination events in four strains (JL108, JL60, DQ7706 and DQ7728), suggesting DQ8186 and ZD0510, or earlier unisolated strains, as potential parental strains. Amino acid sequence analysis revealed multiple coding mutations among the 14 isolates. Although antigenic epitope mutations (A362T and N399D) were identified in VP2, they did not induce significant conformational changes. Physicochemical characterization demonstrated that the virus exhibited sensitivity to chloroform and loses its infectivity after chloroform treatment, which is inconsistent with previous research reports. This study reports the first isolation of 14 BPV1 strains in Northeast China, revealing BPV1 genetic evolution, antigenic variation, and the first documented recombination events among regional strains, providing new insights into the molecular evolution of BPV1 and disease control.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2561830"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461896/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and comprehensive characterization of bovine parvovirus 1 from diarrheic calves in Northeast China: Insights into evolution and biology.\",\"authors\":\"Mingze Chen, Yingying Ma, Yue Yan, Xihuai Xue, Wei Wu, Fei Teng, Guiwei Li, Chenyu Zheng, Qiying Han, Shilong You, Yanping Jiang, Jiaxuan Li, Wen Cui, Feipeng Zhao, Hongzhe Zhao, Xinyuan Qiao\",\"doi\":\"10.1080/21505594.2025.2561830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bovine parvovirus (BPV) is among the pathogens associated with respiratory, digestive, and reproductive disorders in cattle, contributing to significant economic losses in the global cattle industry. To investigate the prevalence and genetic variability of BPV in diarrheic cattle, 14 BPV strains were isolated from 673 bovine diarrhea samples (2017-2022, Northeast China) using BT cells. Notably, the DQ7498 strain exhibited the highest proliferation efficiency (titer reaching 10<sup>8.12</sup>TCID<sub>50</sub>/mL). Sensitive cell detection assays showed isolated strains stably serially passaged only in BT and bovine lung cells. Electron microscopy revealed that all isolates as non-enveloped icosahedrons structures (approximately 25 nm in diameter), consistent with parvovirus morphology. Complete coding sequence (CDS) and phylogenetic analysis revealed that the 14 isolates strains were closely related to BPV1 reference strains (DQ335247, NC001540), with high genetic identity (96.5%-99%). Recombination analysis identified genomic recombination events in four strains (JL108, JL60, DQ7706 and DQ7728), suggesting DQ8186 and ZD0510, or earlier unisolated strains, as potential parental strains. Amino acid sequence analysis revealed multiple coding mutations among the 14 isolates. Although antigenic epitope mutations (A362T and N399D) were identified in VP2, they did not induce significant conformational changes. Physicochemical characterization demonstrated that the virus exhibited sensitivity to chloroform and loses its infectivity after chloroform treatment, which is inconsistent with previous research reports. This study reports the first isolation of 14 BPV1 strains in Northeast China, revealing BPV1 genetic evolution, antigenic variation, and the first documented recombination events among regional strains, providing new insights into the molecular evolution of BPV1 and disease control.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":\"16 1\",\"pages\":\"2561830\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461896/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2025.2561830\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2561830","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牛细小病毒(BPV)是与牛的呼吸、消化和生殖疾病相关的病原体之一,对全球养牛业造成重大经济损失。为了研究BPV在腹泻牛中的流行率和遗传变异性,利用BT细胞从东北地区673份牛腹泻样品中分离出14株BPV。值得注意的是,DQ7498菌株的增殖效率最高,滴度达到108.12TCID50/mL。敏感细胞检测实验表明,分离的菌株仅在BT和牛肺细胞中稳定地连续传代。电镜显示所有分离株均为非包膜二十面体结构(直径约25 nm),与细小病毒形态一致。系统发育分析显示,14株分离株与BPV1参考菌株DQ335247、NC001540亲缘关系较近,具有较高的遗传同源性(96.5% ~ 99%)。重组分析发现,4株菌株(JL108、JL60、DQ7706和DQ7728)存在基因组重组事件,提示DQ8186和ZD0510或更早的未分离菌株可能是亲本菌株。氨基酸序列分析显示,14株菌株存在多个编码突变。虽然在VP2中发现了抗原表位突变(A362T和N399D),但它们没有引起显著的构象变化。理化特性表明,该病毒对氯仿敏感,经氯仿处理后失去感染性,这与以往的研究报道不一致。本研究报道了东北地区首次分离到14株BPV1病毒株,揭示了BPV1的遗传进化、抗原变异,并首次记录了区域菌株之间的重组事件,为BPV1的分子进化和疾病控制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation and comprehensive characterization of bovine parvovirus 1 from diarrheic calves in Northeast China: Insights into evolution and biology.

Bovine parvovirus (BPV) is among the pathogens associated with respiratory, digestive, and reproductive disorders in cattle, contributing to significant economic losses in the global cattle industry. To investigate the prevalence and genetic variability of BPV in diarrheic cattle, 14 BPV strains were isolated from 673 bovine diarrhea samples (2017-2022, Northeast China) using BT cells. Notably, the DQ7498 strain exhibited the highest proliferation efficiency (titer reaching 108.12TCID50/mL). Sensitive cell detection assays showed isolated strains stably serially passaged only in BT and bovine lung cells. Electron microscopy revealed that all isolates as non-enveloped icosahedrons structures (approximately 25 nm in diameter), consistent with parvovirus morphology. Complete coding sequence (CDS) and phylogenetic analysis revealed that the 14 isolates strains were closely related to BPV1 reference strains (DQ335247, NC001540), with high genetic identity (96.5%-99%). Recombination analysis identified genomic recombination events in four strains (JL108, JL60, DQ7706 and DQ7728), suggesting DQ8186 and ZD0510, or earlier unisolated strains, as potential parental strains. Amino acid sequence analysis revealed multiple coding mutations among the 14 isolates. Although antigenic epitope mutations (A362T and N399D) were identified in VP2, they did not induce significant conformational changes. Physicochemical characterization demonstrated that the virus exhibited sensitivity to chloroform and loses its infectivity after chloroform treatment, which is inconsistent with previous research reports. This study reports the first isolation of 14 BPV1 strains in Northeast China, revealing BPV1 genetic evolution, antigenic variation, and the first documented recombination events among regional strains, providing new insights into the molecular evolution of BPV1 and disease control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信