生物学最新文献

筛选
英文 中文
Emerging West African Genotype Chikungunya Virus in Mosquito Virome. 蚊子病毒中的新兴西非基孔肯雅病毒基因型。
IF 5.5 1区 农林科学
Virulence Pub Date : 2025-12-01 Epub Date: 2024-12-23 DOI: 10.1080/21505594.2024.2444686
Pengpeng Xiao, Yujia Hao, Yuge Yuan, Wenzhou Ma, Yiquan Li, He Zhang, Nan Li
{"title":"Emerging West African Genotype Chikungunya Virus in Mosquito Virome.","authors":"Pengpeng Xiao, Yujia Hao, Yuge Yuan, Wenzhou Ma, Yiquan Li, He Zhang, Nan Li","doi":"10.1080/21505594.2024.2444686","DOIUrl":"https://doi.org/10.1080/21505594.2024.2444686","url":null,"abstract":"<p><p>We studied the viromes of three dominant mosquito species in Wenzhou, a coastal city in Zhejiang Province, using metavirome sequencing, with 18 viral families identified. Viral sequences were verified by RT-PCR. The JEV E gene was most closely related to the 1988 Korean strain. DENV sequences were most closely related to the 1997 Australian strain. CHIKV-E1-1 was most closely related to the 1983 Senegal strain and belonged to West African genotype CHIKV. Remarkably, this is the first time that a West African genotype of CHIKV has been detected in Zhejiang Province. Mutations in the CHIKV-E1-1 protein A226V may increase infectivity in <i>Ae. albopictus</i>. Three non-conservative mutations of CHIKV-E1-1 (D45H, D70H and V290D) may have an impact on the function. In conclusion, our study reveals the diversity of mosquito-borne viruses and potential emerging outbreaks in the southeast coastal region of China, providing new perspectives for mining the ecological characterization of other important arboviruses.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2444686"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL14 Mediates Glut3 m6A methylation to improve osteogenesis under oxidative stress condition. METTL14介导Glut3 m6A甲基化促进氧化应激条件下的成骨。
IF 5.2 2区 生物学
Redox Report Pub Date : 2025-12-01 Epub Date: 2024-12-31 DOI: 10.1080/13510002.2024.2435241
Ying Wang, Xueying Yu, Fenyong Sun, Yan Fu, Tingting Hu, Qiqing Shi, Qiuhong Man
{"title":"METTL14 Mediates <i>Glut3</i> m6A methylation to improve osteogenesis under oxidative stress condition.","authors":"Ying Wang, Xueying Yu, Fenyong Sun, Yan Fu, Tingting Hu, Qiqing Shi, Qiuhong Man","doi":"10.1080/13510002.2024.2435241","DOIUrl":"https://doi.org/10.1080/13510002.2024.2435241","url":null,"abstract":"<p><strong>Objectives: </strong>Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.</p><p><strong>Methods: </strong>We utilized a concentration of 200 μM hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to establish an oxidative damage model of MC3T3-E1 cells. Subsequently, we examined the alterations in the m6A methyltransferases (METTL3, METTL14), glucose transporter proteins (GLUT1, GLUT3) and validated m6A methyltransferase overexpression in vitro and in an osteoporosis model. The osteoblast differentiation and osteogenesis-related molecules and serum bone resorption markers were measured by biochemical analysis, Alizarin Red S staining, Western blot and ELISA.</p><p><strong>Results: </strong>H<sub>2</sub>O<sub>2</sub> treatment inhibited glycolysis and osteoblast differentiation in MC3T3-E1 cells. However, when METTL14 was overexpressed, these changes induced by H<sub>2</sub>O<sub>2</sub> could be mitigated. Our findings indicate that METTL14 promotes GLUT3 expression via YTHDF1, leading to the modulation of various parameters in the H<sub>2</sub>O<sub>2</sub>-induced model. Similar positive effects of METTL14 on osteogenesis were observed in an ovariectomized mouse osteoporosis model.</p><p><strong>Discussion: </strong>METTL14 could serve as a potential therapeutic approach for enhancing osteoporosis treatment.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2435241"},"PeriodicalIF":5.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly pathogenic strain of porcine deltacoronavirus disrupts the intestinal barrier and causes diarrhea in newborn piglets. 猪三角冠状病毒的高致病性菌株破坏肠道屏障并引起新生仔猪腹泻。
IF 5.5 1区 农林科学
Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-06 DOI: 10.1080/21505594.2024.2446742
Xin Yao, Wei-Hong Lu, Wen-Ting Qiao, Yu-Qian Zhang, Bao-Ying Zhang, Hui-Xin Li, Jin-Long Li
{"title":"The highly pathogenic strain of porcine deltacoronavirus disrupts the intestinal barrier and causes diarrhea in newborn piglets.","authors":"Xin Yao, Wei-Hong Lu, Wen-Ting Qiao, Yu-Qian Zhang, Bao-Ying Zhang, Hui-Xin Li, Jin-Long Li","doi":"10.1080/21505594.2024.2446742","DOIUrl":"https://doi.org/10.1080/21505594.2024.2446742","url":null,"abstract":"<p><p>Porcine deltacoronavirus (PDCoV) is increasingly prevalent in newborn piglets with diarrhea. With the development of research on the virus and the feasibility of PDCoV cross-species transmission, the biosafety and the development of pig industry have been greatly affected. In this study, a PDCoV strain CH/LNFX/2022 was isolated from diarrheal newborn piglets at a farm in China. A genome-wide based phylogenetic analysis suggests that 97.5% to 99.2% homology existed in the whole genomes of other strains. Five amino acid mutations are seen for the first time in the S protein. By constructing 3D models, it was found that the S1-NTD/CTD and S2-HR-C regions produced structural alterations. Protein functional analysis showed that the structural changes of the three regions changed the epitope of S protein, the O-GalNAc glycosylation site and the 3C-like protease cleavage site. In addition, oral administration of 10<sup>7</sup> TCID<sub>50</sub> CH/LNFX/2022 to newborn piglets successfully reproduced obvious clinical signs of piglets, such as diarrhea and dehydration. Meanwhile, PDCoV antigen was detected by immunofluorescence in the small intestine, and microscopic lesions and intestinal mucosal barrier destruction were detected by histological observation and scanning electron microscopy. Our study confirmed that porcine coronavirus strains increased pathogenicity through evolution, damaged the intestinal barrier of newborn piglets, and caused diarrhea in pigs. This study provided the candidate strains and theoretical basis for establishing the prevention and control system of vaccine and diagnostic methods for piglet diarrhea.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2446742"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling and analysis of an epidemic model with awareness caused by deaths due to fear.
IF 1.8 4区 数学
Journal of Biological Dynamics Pub Date : 2025-12-01 Epub Date: 2025-01-29 DOI: 10.1080/17513758.2025.2458890
Ling Xue, Junqi Huo, Yuxin Zhang
{"title":"Modelling and analysis of an epidemic model with awareness caused by deaths due to fear.","authors":"Ling Xue, Junqi Huo, Yuxin Zhang","doi":"10.1080/17513758.2025.2458890","DOIUrl":"https://doi.org/10.1080/17513758.2025.2458890","url":null,"abstract":"<p><p>In this paper, we establish a compartmental model in which the transmission rate is associated with the fear of being infected by COVID-19. We provide a detailed analysis of the epidemic model and established results for the existence of a positively invariant set. The expression of the basic reproduction number <math><msub><mi>R</mi><mn>0</mn></msub></math> is characterized. It is shown that the disease-free equilibrium (DFE) is globally asymptotically stable if <math><msub><mi>R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></math>, and the system exhibits a forward bifurcation if <math><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn></math>. When <math><msub><mi>R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></math>, the system is uniformly persistent, the DFE is unstable and there exists a unique and globally asymptotic stable endemic equilibrium (EE). We fit unknown parameters using the reported data in Canada from September 1 to October 10, 2021, and carry out sensitivity analysis. The quantitative analysis of the model with awareness demonstrates the significance of reducing the transmission rate and enhancing public protective awareness.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2458890"},"PeriodicalIF":1.8,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens. PA-X宿主关闭位点100 V对高致病性H7N9甲型流感病毒在小鼠和鸡体内的病毒适应度有相反的影响。
IF 5.5 1区 农林科学
Virulence Pub Date : 2025-12-01 Epub Date: 2024-12-28 DOI: 10.1080/21505594.2024.2445238
Xia Chen, Ming Kong, Chunxi Ma, Manyu Zhang, Zenglei Hu, Min Gu, Xiaoquan Wang, Ruyi Gao, Shunlin Hu, Yu Chen, Xiaowen Liu, Daxin Peng, Xiufan Liu, Jiao Hu
{"title":"The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens.","authors":"Xia Chen, Ming Kong, Chunxi Ma, Manyu Zhang, Zenglei Hu, Min Gu, Xiaoquan Wang, Ruyi Gao, Shunlin Hu, Yu Chen, Xiaowen Liu, Daxin Peng, Xiufan Liu, Jiao Hu","doi":"10.1080/21505594.2024.2445238","DOIUrl":"https://doi.org/10.1080/21505594.2024.2445238","url":null,"abstract":"<p><p>Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed \"host shutoff.\" Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes. However, the specific role of PA-X host shutoff activity in viral fitness of IAV remains poorly understood. Herein, we successfully mapped PA-X 100 V as a novel site important for host shutoff of the H7N9 and H5N1 viruses. By analysing the polymorphism of this residue in various subtype viruses, we found that PA-X 100 was highly variable in H7N9 viruses. Structural analysis revealed that 100 V was generally close to the PA-X endonuclease active site, which may account for its host shutoff activity. By generating the corresponding mutant viruses derived from the parental H7N9 virus and the PA-X-deficient H7N9 virus, we determined that PA-X 100 V significantly enhanced viral fitness in mice while diminishing viral virulence in chickens. Mechanistically, PA-X 100 V significantly increased viral polymerase activity and viral replication in mammalian cells. Furthermore, PA-X 100 V highly blunted the global host response in 293T cells, particularly restraining genes involved in energy metabolism and inflammatory response. Collectively, our data provided information about the intricate role of the PA-X host shutoff site in regulating the viral fitness of the H7N9 influenza virus, which furthers our understanding of the complicated pathogenesis of the influenza A virus.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2445238"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of AgNPs and zileuton on PCOS via ferroptosis and inflammation mitigation. AgNPs和zileuton通过铁下垂和炎症缓解对PCOS的协同作用。
IF 5.2 2区 生物学
Redox Report Pub Date : 2025-12-01 Epub Date: 2024-12-26 DOI: 10.1080/13510002.2024.2445398
Amira K Eltokhy, Rehab Ahmed Ahmed El-Shaer, Omnia Safwat El-Deeb, Eman E Farghal, Rowida Raafat Ibrahim, Rasha Elesawy, Marwa Mahmoud Awad, Radwa Ismail, Shaimaa M Motawea, Doaa Shatat, Yasser Mostafa Hafez, Hend Ahmed El Hanafy, Marwa Mohamed Atef
{"title":"Synergistic effects of AgNPs and zileuton on PCOS via ferroptosis and inflammation mitigation.","authors":"Amira K Eltokhy, Rehab Ahmed Ahmed El-Shaer, Omnia Safwat El-Deeb, Eman E Farghal, Rowida Raafat Ibrahim, Rasha Elesawy, Marwa Mahmoud Awad, Radwa Ismail, Shaimaa M Motawea, Doaa Shatat, Yasser Mostafa Hafez, Hend Ahmed El Hanafy, Marwa Mohamed Atef","doi":"10.1080/13510002.2024.2445398","DOIUrl":"https://doi.org/10.1080/13510002.2024.2445398","url":null,"abstract":"<p><strong>Background: </strong>The most prevalent endocrine disorder affecting women is PCOS. Programmed death of ovarian cells has yet to be elucidated. Ferroptosis is a kind of iron-dependent necrosis featured by significantly Fe<sup>+2</sup>-dependent lipid peroxidation. The ongoing study aimed to reinforce fertility by combining therapy with AgNPs and (Zileuton) in PCOS rats' model.</p><p><strong>Methods: </strong>The study included 75 adult female rats divided into 5 groups; control, PCOS, PCOS treated with AgNPs, PCOS treated with Zileuton, and PCOS group treated with AgNPs and Zileuton. The study investigated the anti-ferroptotic, anti-inflammatory, antioxidant, antiapoptotic, histopathological and immunohistochemical examinations of COX-2 and VEGF.</p><p><strong>Results: </strong>The combination of AgNPs and Zileuton showed significant reduction of inflammatory mediators (IL-6, TNF-α, NFk-B) compared with diseased group (<i>P</i>-<i>value</i> < 0.05), regression of ferroptosis marks (Panx1 and TLR4 expression, Fe<sup>+2</sup> levels) compared with diseased group (<i>P</i>-<i>value</i> < 0.05), depression of apoptotic marker caspase 3 level compared with diseased animals (<i>P</i>-value < 0.05), depression of MDA level, elevation of HO-1, GPx4 activity, and reduction of Cox2 and VEGF as compared with the diseased, AgNPs or zileuton-treated groups (<i>P</i>-value < 0.05).</p><p><strong>Conclusion: </strong>The study showed that the combination of AgNPs and zileuton guards against, inflammation, apoptosis, and ferroptosis in PCO.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2445398"},"PeriodicalIF":5.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. 探索黑腹果蝇作为模式生物在生物医学研究中的多功能性:综述。
IF 2.4 4区 生物学
Fly Pub Date : 2025-12-01 Epub Date: 2024-12-25 DOI: 10.1080/19336934.2024.2420453
Ayomide Victor Atoki, Patrick Maduabuchi Aja, Tijjani Salihu Shinkafi, Erick Nyakundi Ondari, Adekunle Ismahil Adeniyi, Ilemobayo Victor Fasogbon, Reuben Samson Dangana, Umar Uthman Shehu, Akinpelumi Akin-Adewumi
{"title":"Exploring the versatility of <i>Drosophila melanogaster</i> as a model organism in biomedical research: a comprehensive review.","authors":"Ayomide Victor Atoki, Patrick Maduabuchi Aja, Tijjani Salihu Shinkafi, Erick Nyakundi Ondari, Adekunle Ismahil Adeniyi, Ilemobayo Victor Fasogbon, Reuben Samson Dangana, Umar Uthman Shehu, Akinpelumi Akin-Adewumi","doi":"10.1080/19336934.2024.2420453","DOIUrl":"https://doi.org/10.1080/19336934.2024.2420453","url":null,"abstract":"<p><p><i>Drosophila melanogaster</i> is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, <i>Drosophila</i> provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing <i>Drosophila</i> for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous <i>Drosophila</i> genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of <i>Drosophila</i> in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms <i>Drosophila</i>'s critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"19 1","pages":"2420453"},"PeriodicalIF":2.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). 多种族动脉粥样硬化研究(MESA)中感知歧视的全表观基因组关联研究。
IF 2.9 3区 生物学
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-01-18 DOI: 10.1080/15592294.2024.2445447
Wei Zhao, Lisha Lin, Kristen M Kelly, Lauren A Opsasnick, Belinda L Needham, Yongmei Liu, Srijan Sen, Jennifer A Smith
{"title":"Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA).","authors":"Wei Zhao, Lisha Lin, Kristen M Kelly, Lauren A Opsasnick, Belinda L Needham, Yongmei Liu, Srijan Sen, Jennifer A Smith","doi":"10.1080/15592294.2024.2445447","DOIUrl":"https://doi.org/10.1080/15592294.2024.2445447","url":null,"abstract":"<p><p>Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes <i>NDUFS5</i>, <i>AK1RIN1</i>, <i>NCF4</i> and <i>ADSSL1</i>. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2445447"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Klebsiella pneumoniae derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications. 肺炎克雷伯菌外膜囊泡介导的细菌毒力、抗生素耐药性、宿主免疫反应及临床应用
IF 5.5 1区 农林科学
Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-10 DOI: 10.1080/21505594.2025.2449722
Lifeng Li, Xinxiu Xu, Ping Cheng, Zengyuan Yu, Mingchao Li, Zhidan Yu, Weyland Cheng, Wancun Zhang, Huiqing Sun, Xiaorui Song
{"title":"<i>Klebsiella pneumoniae</i> derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications.","authors":"Lifeng Li, Xinxiu Xu, Ping Cheng, Zengyuan Yu, Mingchao Li, Zhidan Yu, Weyland Cheng, Wancun Zhang, Huiqing Sun, Xiaorui Song","doi":"10.1080/21505594.2025.2449722","DOIUrl":"10.1080/21505594.2025.2449722","url":null,"abstract":"<p><p><i>Klebsiella pneumoniae</i> is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids. Emerging studies have reported various roles of OMVs in bacterial virulence, antibiotic resistance, stress adaptation, and host interactions, whereas knowledge on their roles in <i>K. pneumoniae</i> is currently unclear. In this review, we summarized recent progress on the biogenesis, components, and biological function of <i>K. pneumoniae</i> OMVs, the impact and action mechanism in virulence, antibiotic resistance, and host immune response. We also deliberated on the potential of <i>K. pneumoniae</i> OMVs in vaccine development, as diagnostic biomarkers, and as drug nanocarriers. In conclusion, <i>K. pneumoniae</i> OMVs hold great promise in the prevention and control of infectious diseases, which merits further investigation.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2449722"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunogenicity and vaccine efficacy of Actinobacillus pleuropneumoniae-derived extracellular vesicles as a novel vaccine candidate. 胸膜肺炎放线菌来源的细胞外囊泡作为一种新型候选疫苗的免疫原性和疫苗效力。
IF 5.5 1区 农林科学
Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-20 DOI: 10.1080/21505594.2025.2453818
Su Hyun Park, Yun Hye Kim, Hyeon Jin Lee, Jeong Moo Han, Byoung-Joo Seo, Gyeong-Seo Park, Chonghan Kim, Young Bae Ryu, Woo Sik Kim
{"title":"Immunogenicity and vaccine efficacy of <i>Actinobacillus pleuropneumoniae</i>-derived extracellular vesicles as a novel vaccine candidate.","authors":"Su Hyun Park, Yun Hye Kim, Hyeon Jin Lee, Jeong Moo Han, Byoung-Joo Seo, Gyeong-Seo Park, Chonghan Kim, Young Bae Ryu, Woo Sik Kim","doi":"10.1080/21505594.2025.2453818","DOIUrl":"10.1080/21505594.2025.2453818","url":null,"abstract":"<p><p><i>Actinobacillus pleuropneumoniae</i> (APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.4 mV. These EVs demonstrated stability under external stressors, such as pH changes and enzymatic exposure and were found to contain 86 major metabolites. Additionally, APP-EVs induced dendritic cell (DC) maturation in a Toll-like receptor 4 (TLR4)-dependent manner without cytotoxicity. APP-EVs predominantly elicited Th1-mediated IgG responses in immunized mice without significant liver and kidney toxicity. Contrarily, unlike Coglapix, which induced stronger Th2-mediated responses and notable toxicity. In addition, APP-EVs triggered APP-specific Th1, Th17, and cytotoxic T lymphocyte (CTL) responses and promoted the activation of multifunctional T-cells. Notably, APP-EV immunization enhanced macrophage phagocytosis and improved survival rates in mice challenged with APP infection compared to those treated with Coglapix. These findings suggest that APP-EVs are promising vaccine candidates, capable of inducing potent APP-specific T-cell responses, particularly Th1, Th17, CTL, and multifunctional T-cells, thereby enhancing the protective immune response against APP infection.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2453818"},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信