Dennis Khodasevich, Anne K Bozack, Saher Daredia, Julianna Deardorff, Kim G Harley, Brenda Eskenazi, Weihong Guo, Nina Holland, Andres Cardenas
{"title":"Blood transcriptomic associations of epigenetic age in adolescents.","authors":"Dennis Khodasevich, Anne K Bozack, Saher Daredia, Julianna Deardorff, Kim G Harley, Brenda Eskenazi, Weihong Guo, Nina Holland, Andres Cardenas","doi":"10.1080/15592294.2025.2503824","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic aging in early life remains poorly characterized, and patterns of gene expression can provide biologically meaningful insights. Blood DNA methylation was measured using the Illumina EPICv1.0 array and RNA sequencing was performed in blood in 174 adolescent participants (age range: 14-15 years) from the CHAMACOS cohort. Thirteen widely used epigenetic clocks were calculated, and their associations with transcriptome-wide RNA expression were tested using the <i>limma-voom</i> pipeline. We found evidence for substantial shared associations with RNA expression between different epigenetic clocks, including differential expression of <i>MYO6</i> and <i>ZBTB38</i> across five clocks. The epiTOC2, principal component (PC) PhenoAge, Hannum, PedBE and PC Hannum clocks were associated with differential expression of the highest number of RNAs, exhibiting associations with 22, 8, 5, 3, and 2 transcripts respectively. Generally, biological clocks were associated with differential expression of more genes than chronological clocks, and PC clocks were associated with differential expression of more genes relative to their CpG-trained counterparts. A total of 17 associations in our study were replicated in an independent adult sample (age range: 40-54 years). Our findings support the biological relevance of epigenetic clocks in adolescents and provide direction for selection of epigenetic ageing biomarkers in adolescent research.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2503824"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2503824","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetic aging in early life remains poorly characterized, and patterns of gene expression can provide biologically meaningful insights. Blood DNA methylation was measured using the Illumina EPICv1.0 array and RNA sequencing was performed in blood in 174 adolescent participants (age range: 14-15 years) from the CHAMACOS cohort. Thirteen widely used epigenetic clocks were calculated, and their associations with transcriptome-wide RNA expression were tested using the limma-voom pipeline. We found evidence for substantial shared associations with RNA expression between different epigenetic clocks, including differential expression of MYO6 and ZBTB38 across five clocks. The epiTOC2, principal component (PC) PhenoAge, Hannum, PedBE and PC Hannum clocks were associated with differential expression of the highest number of RNAs, exhibiting associations with 22, 8, 5, 3, and 2 transcripts respectively. Generally, biological clocks were associated with differential expression of more genes than chronological clocks, and PC clocks were associated with differential expression of more genes relative to their CpG-trained counterparts. A total of 17 associations in our study were replicated in an independent adult sample (age range: 40-54 years). Our findings support the biological relevance of epigenetic clocks in adolescents and provide direction for selection of epigenetic ageing biomarkers in adolescent research.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics