{"title":"The role of histone methyltransferases in therapeutic resistance of NSCLC.","authors":"Fuze Zhu, Xudong Yang, Yanlong Yang, Xinghe Tong, Jie Jia, Xingkun Gu, Yunping Zhao, Xiaobo Chen","doi":"10.1080/15592294.2025.2536786","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional treatments, including chemotherapy, immunotherapy, targeted therapy and radiotherapy, are effective clinical strategies for non-small cell lung cancer (NSCLC) patients, which can significantly improve life quality and prolong survival time. However, the application of drugs in NSCLC patients inevitably leads to therapeutic resistance. In recent years, many studies have shown that histone methyltransferases (HMTs), including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs), play pivotal roles in tumor initiation, progression, and treatment resistance. This review synthesizes current insights into histone methylation dynamics driving therapeutic resistance, with a focus on key HMTs and their mechanisms. Additionally, we discuss the molecular mechanisms underlying histone methylation-mediated therapeutic resistance and potential therapeutic strategies targeting histone methylation for overcoming therapeutic resistance in NSCLC.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2536786"},"PeriodicalIF":3.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2536786","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional treatments, including chemotherapy, immunotherapy, targeted therapy and radiotherapy, are effective clinical strategies for non-small cell lung cancer (NSCLC) patients, which can significantly improve life quality and prolong survival time. However, the application of drugs in NSCLC patients inevitably leads to therapeutic resistance. In recent years, many studies have shown that histone methyltransferases (HMTs), including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs), play pivotal roles in tumor initiation, progression, and treatment resistance. This review synthesizes current insights into histone methylation dynamics driving therapeutic resistance, with a focus on key HMTs and their mechanisms. Additionally, we discuss the molecular mechanisms underlying histone methylation-mediated therapeutic resistance and potential therapeutic strategies targeting histone methylation for overcoming therapeutic resistance in NSCLC.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics