医学最新文献

筛选
英文 中文
Protein arginine methyltransferase-6 regulates heterogeneous nuclear ribonucleoprotein-F expression and is a potential target for the treatment of neuropathic pain. 蛋白精氨酸甲基转移酶-6调节异质核糖核蛋白-F的表达,是治疗神经性疼痛的潜在靶点。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-23-01539
Xiaoyu Zhang, Yuqi Liu, Fangxia Xu, Chengcheng Zhou, Kaimei Lu, Bin Fang, Lijuan Wang, Lina Huang, Zifeng Xu
{"title":"Protein arginine methyltransferase-6 regulates heterogeneous nuclear ribonucleoprotein-F expression and is a potential target for the treatment of neuropathic pain.","authors":"Xiaoyu Zhang, Yuqi Liu, Fangxia Xu, Chengcheng Zhou, Kaimei Lu, Bin Fang, Lijuan Wang, Lina Huang, Zifeng Xu","doi":"10.4103/NRR.NRR-D-23-01539","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01539","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00029/figure1/v/2024-11-05T132919Z/r/image-tiff Protein arginine methyltransferase-6 participates in a range of biological functions, particularly RNA processing, transcription, chromatin remodeling, and endosomal trafficking. However, it remains unclear whether protein arginine methyltransferase-6 modifies neuropathic pain and, if so, what the mechanisms of this effect. In this study, protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model, chronic constriction injury model and bone cancer pain model, using immunohistochemistry, western blotting, immunoprecipitation, and label-free proteomic analysis. The results showed that protein arginine methyltransferase-6 mostly co-localized with β-tubulin III in the dorsal root ganglion, and that its expression decreased following spared nerve injury, chronic constriction injury and bone cancer pain. In addition, PRMT6 knockout (Prmt6-/-) mice exhibited pain hypersensitivity. Furthermore, the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression. Moreover, when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury, increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn, and the response to mechanical stimuli was enhanced. Mechanistically, protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F. Additionally, protein arginine methyltransferase-6-mediated modulation of heterogeneous nuclear ribonucleoprotein-F expression required amino acids 319 to 388, but not classical H3R2 methylation. These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target for the treatment of peripheral neuropathic pain.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 9","pages":"2682-2696"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging potential of progranulin-dependent SorCS2 signaling in healthy and diseased nervous systems. 健康和患病神经系统中依赖原粒细胞素的 SorCS2 信号传递的新潜力。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00734
Alena Salasova, Anders Nykjær
{"title":"Emerging potential of progranulin-dependent SorCS2 signaling in healthy and diseased nervous systems.","authors":"Alena Salasova, Anders Nykjær","doi":"10.4103/NRR.NRR-D-24-00734","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00734","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 9","pages":"2591-2593"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk between androgen signaling and the chemokine receptor CXCR4: a novel strategy to promote myelin regeneration. 雄激素信号传导与趋化因子受体CXCR4之间的相互影响:促进髓鞘再生的新策略
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-24 DOI: 10.4103/NRR.NRR-D-24-00439
Marianne Bardy-Lagarde, Narimène Asbelaoui, Abdel Mouman Ghoumari
{"title":"Crosstalk between androgen signaling and the chemokine receptor CXCR4: a novel strategy to promote myelin regeneration.","authors":"Marianne Bardy-Lagarde, Narimène Asbelaoui, Abdel Mouman Ghoumari","doi":"10.4103/NRR.NRR-D-24-00439","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00439","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 9","pages":"2581-2582"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo. 通过 HDAC6 介导的 V-ATP 酶组装和溶酶体酸化增强淀粉样蛋白-β的自噬清除,可在体外和体内预防阿尔茨海默病。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-23-01633
Zhimin Long, Chuanhua Ge, Yueyang Zhao, Yuanjie Liu, Qinghua Zeng, Qing Tang, Zhifang Dong, Guiqiong He
{"title":"Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.","authors":"Zhimin Long, Chuanhua Ge, Yueyang Zhao, Yuanjie Liu, Qinghua Zeng, Qing Tang, Zhifang Dong, Guiqiong He","doi":"10.4103/NRR.NRR-D-23-01633","DOIUrl":"10.4103/NRR.NRR-D-23-01633","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00025/figure1/v/2024-11-05T132919Z/r/image-tiff Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-β in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-β aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2633-2644"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice. 重组几丁质酶-3样蛋白1通过M2小胶质细胞极化减轻术后认知功能障碍小鼠的学习和记忆损伤
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-23-01233
Yujia Liu, Xue Han, Yan Su, Yiming Zhou, Minhui Xu, Jiyan Xu, Zhengliang Ma, Xiaoping Gu, Tianjiao Xia
{"title":"Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice.","authors":"Yujia Liu, Xue Han, Yan Su, Yiming Zhou, Minhui Xu, Jiyan Xu, Zhengliang Ma, Xiaoping Gu, Tianjiao Xia","doi":"10.4103/NRR.NRR-D-23-01233","DOIUrl":"10.4103/NRR.NRR-D-23-01233","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00032/figure1/v/2024-11-05T132919Z/r/image-tiff Postoperative cognitive dysfunction is a severe complication of the central nervous system that occurs after anesthesia and surgery, and has received attention for its high incidence and effect on the quality of life of patients. To date, there are no viable treatment options for postoperative cognitive dysfunction. The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research. To identify the signaling mechanisms contributing to postoperative cognitive dysfunction, we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset, which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus 3 days after tibial fracture. The dataset was enriched in genes associated with the biological process \"regulation of immune cells,\" of which Chil1 was identified as a hub gene. Therefore, we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fracture surgery. Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 1 24 hours post-surgery, and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests. In addition, protein expression levels of proinflammatory factors (interleukin-1β and inducible nitric oxide synthase), M2-type macrophage markers (CD206 and arginase-1), and cognition-related proteins (brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B) were measured in hippocampus by western blotting. Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment, downregulated interleukin-1β and nducible nitric oxide synthase expression, and upregulated CD206, arginase-1, pNR2B, and brain-derived neurotropic factor expression compared with vehicle treatment. Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1. Collectively, our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus. Therefore, recombinant chitinase-3-like protein 1 may have therapeutic potential for postoperative cognitive dysfunction.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2727-2736"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disruption of neuronal actin barrier promotes the entry of disease-implicated proteins to exacerbate amyotrophic lateral sclerosis pathology. 神经元肌动蛋白屏障的破坏会促进疾病蛋白的进入,从而加剧肌萎缩侧索硬化症的病理变化。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-24 DOI: 10.4103/NRR.NRR-D-24-00661
Mikito Shimizu, Tatsusada Okuno
{"title":"Disruption of neuronal actin barrier promotes the entry of disease-implicated proteins to exacerbate amyotrophic lateral sclerosis pathology.","authors":"Mikito Shimizu, Tatsusada Okuno","doi":"10.4103/NRR.NRR-D-24-00661","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00661","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 9","pages":"2589-2590"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. 骨骼肌和神经肌肉接头处的典型 Wnt 和 Hippo 通路成员之间的相互作用
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00417
Said Hashemolhosseini, Lea Gessler
{"title":"Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction.","authors":"Said Hashemolhosseini, Lea Gessler","doi":"10.4103/NRR.NRR-D-24-00417","DOIUrl":"10.4103/NRR.NRR-D-24-00417","url":null,"abstract":"<p><p>Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2464-2479"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. 急性中枢神经系统损伤中的有丝分裂:调控机制和治疗潜力。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00432
Siyi Xu, Junqiu Jia, Rui Mao, Xiang Cao, Yun Xu
{"title":"Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials.","authors":"Siyi Xu, Junqiu Jia, Rui Mao, Xiang Cao, Yun Xu","doi":"10.4103/NRR.NRR-D-24-00432","DOIUrl":"10.4103/NRR.NRR-D-24-00432","url":null,"abstract":"<p><p>Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2437-2453"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. 肌萎缩性脊髓侧索硬化症的血液诊断和预后生物标志物。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-24 DOI: 10.4103/NRR.NRR-D-24-00286
Yongting Lv, Hongfu Li
{"title":"Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis.","authors":"Yongting Lv, Hongfu Li","doi":"10.4103/NRR.NRR-D-24-00286","DOIUrl":"10.4103/NRR.NRR-D-24-00286","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2556-2570"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury. 脑外伤后,大剂量地塞米松通过GR/JAK1/STAT3信号通路调节小胶质细胞极化。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-09-01 Epub Date: 2024-09-24 DOI: 10.4103/NRR.NRR-D-23-01772
Mengshi Yang, Miao Bai, Yuan Zhuang, Shenghua Lu, Qianqian Ge, Hao Li, Yu Deng, Hongbin Wu, Xiaojian Xu, Fei Niu, Xinlong Dong, Bin Zhang, Baiyun Liu
{"title":"High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury.","authors":"Mengshi Yang, Miao Bai, Yuan Zhuang, Shenghua Lu, Qianqian Ge, Hao Li, Yu Deng, Hongbin Wu, Xiaojian Xu, Fei Niu, Xinlong Dong, Bin Zhang, Baiyun Liu","doi":"10.4103/NRR.NRR-D-23-01772","DOIUrl":"10.4103/NRR.NRR-D-23-01772","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00023/figure1/v/2024-11-05T132919Z/r/image-tiff Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury, the fundamental regulatory and functional mechanisms remain insufficiently understood. As potent anti-inflammatory agents, the use of glucocorticoids in traumatic brain injury is still controversial, and their regulatory effects on microglial polarization are not yet known. In the present study, we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action. In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization. Lipopolysaccharide, dexamethasone, RU486 (a glucocorticoid receptor antagonist), and ruxolitinib (a Janus kinase 1 antagonist) were administered. RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone. The Morris water maze, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence and confocal microscopy analysis, and TUNEL, Nissl, and Golgi staining were performed to investigate our hypothesis. High-throughput sequencing results showed that arginase 1, a marker of M2 microglia, was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at 3 days post-traumatic brain injury. Thus dexamethasone inhibited M1 and M2 microglia, with a more pronounced inhibitory effect on M2 microglia in vitro and in vivo . Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury. Additionally, glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death, and also decreased the density of dendritic spines. A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway. Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia, which plays an anti-inflammatory role. In contrast, inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury. Dexamethasone may exert its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2611-2623"},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信